机器人的结构和基础
组成部分
机器人一般由执行机构、驱动装置、检测装置和控制系统和复杂机械等组成。
编辑本段执行机构
即机器人本体,其臂部一般采用空间开链连杆机构,其中的运动副(转动副或移动副)常称为
机器人高科技产物(18张)关节,关节个数通常即为机器人的自由度数。根据关节配置型式和运动坐标形式的不同,机器人执行机构可分为直角坐标式、圆柱坐标式、极坐标式和关节坐标式等类型。出于拟人化的考虑,常将机器人本体的有关部位分别称为基座、腰部、臂部、腕部、手部(夹持器或末端执行器)和行走部(对于移动机器人)等。
机器人的基本结构是什么?
机器人系统的结构由机器人的机构部分、传感器组、控制部分及信息处理部分组成。机器人的外貌有的像人,有的却并不具有人的模样,但其组成与人很相似。机构 部分包括机械手和移动机构,机械手相当于人手一样,可完成各种工作;移动机构相当于人的脚,机器人靠它来"走路"。感知机器人自身或外部环境变化信息的传 感器是它的感觉器官,相当于人的眼、耳、皮肤等,它包括内传感器和外传感器。电脑是机器人的指挥中心,相当于人脑或中枢神经,它能控制机器人各部位协调动 作;信息处理装置(电子计算机),是人与机器人沟通的工具,可根据外界的环境变化、灵活变更机器人的动作。
太空机器人是如何活跃太空的?
顾名思义,“太空机器人”可理解为活跃在地球之外太空中的机器人。最早的太空机器人当首推美国于1967年4月17日发射的“勘测者3”号。这个重达280千克的机器人根本不具备人的外形特征,它可在地球科学家的指挥下,在月面“识海”地区蹒跚而行,并用“铁臂钢手”在这亘古荒漠上掘了3个洞穴,开出一条小沟(长10多米、深0?2米),挖取了若干科学家们感兴趣的月岩和月土进行化验、分析,并把珍贵的资料及时发回了地球。自此之后,各种形态的机器人开始活跃于太空中:前苏联的“月球车”8腿机器人在崎岖不平的月面上纵横几十千米;航天飞机上无脚机器人,用它有力的机械手把失效或出故障的卫星抓回机舱进行修理,每次都能挽回几千万甚至几亿美元的损失;“海盗”号上重达1?1吨的机器人庞然大物居然能合理安排能量,使只有3个月设计寿命的仪器在火星上工作了4年多……平心而论,这些太空机器人只是低等的,低智商的。随着空间科学的飞速发展,科学家们非常需要有多种传感功能、会作分析判断、能自我检查维修的新型高智能太空机器人。美国登天的“太空清道夫”、“漫游者”及“海盗3”号即是其中典型代表。“太空清道夫”的全称是“太空自动处理轨道碎片系统”,专门用以消除对航天活动危害日益严重的“太空垃圾”。它进入太空后即会自动搜寻猎物——失效的或已被废弃的人造卫星(包括运载火箭)及其碎片残骸,凡其“目力”所及,小的手到擒来,大的则用激光把它们切成小块,再一一装入“肚子”——贮存箱内。专门用以修复卫星的“漫游者”有4条灵活的机械臂,装有新颖的空气动力推进系统和大功率助推火箭,可独立飞行,也可根据需要随时调整轨道和速度。而“海盗3”号实质上是用于火星探测的一辆自动车。它的外形很奇特,两个直径5米的大车轮各由8个乙烯树脂气囊构成,这辆车可自动前进、后退、拐弯,还能越过1?5米高的障碍,并装有自动回避危险的装置。另一方面,由于近年来集成电路精细加工技术不断有重大突破,人们已能把电源、传感器、驱动、传动、自控装置火星漫游车“勇气”号和“机遇”号集成于绿豆大小的多晶硅片上,21世纪,微型太空机器人成为了空间探测的又一主力军。据报道,20世纪90年代初,美国麻省理工学院人工智能研究所已制成3种很小的机器人。其中,最小的一种其体积只有乒乓球大小,重量不到50克。1995年精工埃逊公司造出的“姆休”机器人外形像只小甲虫,前面两根触须似的导线用于供给电源。“姆休”不仅能循光行走,也可自己行动。可以遐想一下,到人们建造月球基地时,必然会先派遣大量“蚂蚁”式的6足机器人去当“建筑工人”,让它们在月球上挖土、推土,做好一切准备工作。在进行火星探测时,又可让成千上万的“蚊子”型微型机器人做开路先锋。由于它们的6条腿中都安装有储存着太阳能的硅弹簧,在其不断更换落地点的同时,从与火星尘土的作用力的分析便可确定火星土壤的特性及有关该星球的地形、地貌。人类如果登上某个星球,那些“小精灵”又可为人类乘坐的大型车辆开路,它们会把越野车前面的地形特征、地貌状况及时传送过来,以避免出现各种可能的危险。知识点太空垃圾太空垃圾是指在人类探索宇宙的过程中,被有意或无意遗弃在宇宙空间的各种残骸和废物。太空垃圾小到人造卫星碎片、漆片、零部件,大到整个火箭发动机。自2009年1月以来已发现有大量的太空垃圾在太空轨道中。由于这些高速运行的太空垃圾可对运转的卫星造成极大损害,因此太空垃圾的处理成为了科学家日益关注的问题。
飞赴国际空间站的“太空机器人F-850”的智能机器人,工作原理到底是什么?
太空机器人F-850机器人应该是“能自动工作的机器”,它们有的功能比较简单,有的就非常复杂,但必须具备以下三个特征: 身体是一种物理状态,具有一定的形态,机器人的外形究竟是什么样子,这取决于人们想让它做什么样的工作,其功能设定决定了机器人的大小、形状、材质和特征等等。大脑 就是控制机器人的程序或指令组,当机器人接收到传感器的信息后,能够遵循人们编写的程序指令,自动执行并完成一系列的动作。控制程序主要取决于下面几种因素:使用传感器的类型和数量,传感器的安装位置,可能的外部激励以及需要达到的活动效果。动作 就是机器人的活动,有时即使它根本不动,这也是它的一种动作表现,任何机器人在程序的指令下要执行某项工作,必定是靠动作来完成的。机器人的组成部分与人类极为类似。一个典型的机器人有一套可移动的身体结构、一部类似于马达的装置、一套传感系统、一个电源和一个用来控制所有这些要素的计算机“大脑”。从本质上讲,机器人是由人类制造的“动物”,它们是模仿人类和动物行为的机器。
空间机器人的特点
空间机器人是在空间环境中活动的,空间环境和地面环境差别很大,空间机器人工作在微重力,高真空,超低温,强辐射,照明差的环境中,因此,空间机器人与地面机器人的要求也必然不相同,有它自身的特点。首先,空间机器人的体积比较小,重量比较轻,抗干扰能力比较强。其次,空间机器人的智能程度比较高,功能比较全。空间机器人消耗的能量要尽可能小,工作寿命要尽可能长,而且由于是工作在太空这一特殊的环境之下,对它的可靠性要求也比较高。此外,空间机器人是在一个不断变化的三维环境中运动并自主导航。空间机器人几乎不能够在空间停留,所以必须能实时确定它在空间的位置及状态;要能对它的垂直运动进行控制;要为它的星际飞行预测及规划路径。
空间机器人有什么作用?
用途 空间建筑与装配 一些大型的安装部件,比如无线电天线,太阳能电池,各个舱段的组装等舱外活动都离不开空间机器人,机器人将承担各种搬运,各构件之间的连接紧固,有毒或危险品的处理等任务。在不久的将来,人造空间站初期建造一半以上的工作都将由机器人完成。 卫星和其他航天器的维护与修理随着人类在太空活动的不断发展,人类在太空的“财产”也越来越多,在这些财产中人造卫星占了绝大多数。如果这些卫星一旦发生故障,丢弃它们再发射新的卫星就很不经济,必须设法修理后使它们重新发挥作用。但是如果派宇航员去修理,又牵涉到舱外活动的问题,而且由于航天器在太空中,是处于强烈宇宙辐射的环境之下,人根本无法执行任务,所以只能依靠机器人。空间机器人所进行的维护和修理工作有回收失灵卫星,对故障卫星进行就地修理,为空间飞行器补给物资等。 空间生产和科学实验宇宙空间为人类提供了地面上无法实现的微重力和高真空环境,利用这一环境可以生产出地面上无法或难以生产出的产品。在太空中还可以进行地面上不能做的科学实验。和空间装配,空间修理不同,空间生产和科学实验主要在舱内环境里进行,操作内容多半是重复性动作,在多数情况下,宇航员可以直接检查和控制。这时候的空间机器人如同工作在地面的工厂里的生产线上一样。因此,可以采用的机器人多是通用型多功能机器人。 空间机器人在保证空间活动的安全性,提高生产效率和经济效益,扩大空间站的作用等方面都将发挥巨大的作用。