Logit模型的简介
Logit模型(Logit model,也译作“评定模型”,“分类评定模型”,又作Logistic regression,“逻辑回归”)是离散选择法模型之一,属于多重变量分析范畴,是社会学、生物统计学、临床、数量心理学、计量经济学、市场营销等统计实证分析的常用方法。逻辑分布(Logistic distribution)公式P(Y=1│X=x)=exp(x'β)/(1+exp(x'β))其中参数β常用极大似然估计。Logit模型是最早的离散选择模型,也是目前应用最广的模型。Logit模型是Luce(1959)根据IIA特性首次导出的;Marschark(1960)证明了Logit模型与最大效用理论的一致性;Marley(1965)研究了模型的形式和效用非确定项的分布之间的关系,证明了极值分布可以推导出Logit形式的模型;McFadden(1974)反过来证明了具有Logit形式的模型效用非确定项一定服从极值分布。此后Logit模型在心理学、社会学、经济学及交通领域得到了广泛的应用,并衍生发展出了其他离散选择模型,形成了完整的离散选择模型体系,如Probit模型、NL模型(Nest Logit model)、Mixed Logit模型等。模型假设个人n对选择枝j的效用由效用确定项和随机项两部分构成:Logit模型的应用广泛性的原因主要是因为其概率表达式的显性特点,模型的求解速度快,应用方便。当模型选择集没有发生变化,而仅仅是当各变量的水平发生变化时(如出行时间发生变化),可以方便的求解各选择枝在新环境下的各选择枝的被选概率。根据Logit模型的IIA特性,选择枝的减少或者增加不影响其他各选择之间被选概率比值的大小,因此,可以直接将需要去掉的选择枝从模型中去掉,也可将新加入的选择枝添加到模型中直接用于预测。Logit模型这种应用的方便性是其他模型所不具有的,也是模型被广泛应用的主原因之一。
谁知道什么是“logit模型”?
另外,向你推荐一本不错的书:王济川、郭志刚,Logistic回归模型——方法与应用,北京:高等教育出版社,2001。浏览一下这三本书的相关内容,你基本上可以弄清楚概率估计模型,至于网上有没有电子版的书我就不太清楚了。这里,我可以先简单的回答你这个问题。首先,通常人们将“Logistic回归”、“Logistic模型”、“Logistic回归模型”及“Logit模型”的称谓相互通用,来指同一个模型,唯一的区别是形式有所不同:logistic回归是直接估计概率,而logit模型对概率做了Logit转换。不过,SPSS软件好像将以分类自变量构成的模型称为Logit模型,而将既有分类自变量又有连续自变量的模型称为Logistic回归模型。至于是二元还是多元,关键是看因变量类别的多少,多元是二元的扩展。其次,当因变量是名义变量时,Logit和Probit没有本质的区别,一般情况下可以换用。区别在于采用的分布函数不同,前者假设随机变量服从逻辑概率分布,而后者假设随机变量服从正态分布。其实,这两种分布函数的公式很相似,函数值相差也并不大,唯一的区别在于逻辑概率分布函数的尾巴比正态分布粗一些。
Logistic模型的详细介绍
与多重线性回归的比较logistic回归(Logistic regression) 与多重线性回归实际上有很多相同之处,最大的区别就在于他们的因变量不同,其他的基本都差不多,正是因为如此,这两种回归可以归于同一个家族,即广义线性模型(generalized linear model)。这一家族中的模型形式基本上都差不多,不同的就是因变量不同,如果是连续的,就是多重线性回归,如果是二项分布,就是logistic回归,如果是poisson分布,就是poisson回归,如果是负二项分布,就是负二项回归,等等。只要注意区分它们的因变量就可以了。 logistic回归的因变量可以是二分非线性差分方程类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。所以实际中最为常用的就是二分类的logistic回归。
什么是logistic模型?
logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率,等等。例如,想探讨胃癌发生的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群肯定有不同的体征和生活方式等。这里的因变量就是是否胃癌,即“是”或“否”,为两分类变量,自变量就可以包括很多了,例如年龄、性别、饮食习惯、幽门螺杆菌感染等。自变量既可以是连续的,也可以是分类的。通过logistic回归分析,就可以大致了解到底哪些因素是胃癌的危险因素。
关于logit和logistic模型的区别
(1)二者的根本区别在于广义化线性模型中的联系函数的形式。logit采用对数形式log(a),logistic形式为log(a/1-a)。
(2)应用上,普通logistic的响应变量是二元的,多元logistic的因变量可为多元。logit的响应变量可以是多元的。
(3)统计软件spss中:logit属于对数线性模型,分析结果主要为因变量和自变量之间的关系,可以细化到各分类因变量与分类自变量之间;logistic属于回归分析,分析结果为估计出自变量参数。regression下有Binary logistic regression和 Multinomial logistic regression 。因变量只取0和1时用的就是Binary logistic regression 。而Multinomial logistic regression 分为多分类无序因变量和多分类有序因变量的logistic回归。即因变量多于两个的。
(4)当因变量是多类的,可以采用logistic,也可以用logit,计算结果并无多少差别。
logit 和logistic模型的区别
(1)二者的根本区别在于广义化线性模型中的联系函数的形式。logit采用对数形式log(a),logistic形式为log(a/1-a)。
(2)应用上,普通logistic的响应变量是二元的,多元logistic的因变量可为多元。logit的响应变量可以是多元的。
(3)统计软件spss中:logit属于对数线性模型,分析结果主要为因变量和自变量之间的关系,可以细化到各分类因变量与分类自变量之间;logistic属于回归分析,分析结果为估计出自变量参数。regression下有Binary
logistic
regression和
Multinomial
logistic
regression
。因变量只取0和1时用的就是Binary
logistic
regression
。而Multinomial
logistic
regression
分为多分类无序因变量和多分类有序因变量的logistic回归。即因变量多于两个的。
(4)当因变量是多类的,可以采用logistic,也可以用logit,计算结果并无多少差别。