请教BUFG与IBUFG在物理意义上的区别
IBUFG即输入全局缓冲,是与专用全局时钟输入管脚相连接的首级全局缓冲。所有从全局时钟管脚输入的信号必须经过IBUFG单元,否则在布局布线时会报错。IBUFG支持AGP、CTT、GTL、GTLP、HSTL、LVCMOS、LVDCI、LVDS、LVPECL、LVTTL、PCI、PCIX和SSTL等多种格式的IO标准。2. IBUFGDS是IBUFG的差分形式,当信号从一对差分全局时钟管脚输入时,必须使用IBUFGDS作为全局时钟输入缓冲。IBUFG支持BLVDS、LDT、LVDSEXT、LVDS、LVPECL和ULVDS等多种格式的IO标准。3. BUFG是全局缓冲,它的输入是IBUFG的输出,BUFG的输出到达FPGA内部的IOB、CLB、选择性块RAM的时钟延迟和抖动最小。4. BUFGCE是带有时钟使能端的全局缓冲。它有一个输入I、一个使能端CE和一个输出端O。只有当BUFGCE的使能端CE有效(高电平)时,BUFGCE才有输出。5. BUFGMUX是全局时钟选择缓冲,它有I0和I1两个输入,一个控制端S,一个输出端O。当S为低电平时输出时钟为I0,反之为I1。需要指出的是BUFGMUX的应用十分灵活,I0和I1两个输入时钟甚至可以为异步关系。6. BUFGP相当于IBUG加上BUFG。7. BUFGDLL是全局缓冲延迟锁相环,相当于BUFG与DLL的结合。BUFGDLL在早期设计中经常使用,用以完成全局时钟的同步和驱动等功能。随着数字时钟管理单元(DCM)的日益完善,目前BUFGDLL的应用已经逐渐被DCM所取代。8. DCM即数字时钟管理单元,主要完成时钟的同步、移相、分频、倍频和去抖动等。DCM与全局时钟有着密不可分的联系,为了达到最小的延迟和抖动,几乎所有的DCM应用都要使用全局缓冲资源。DCM可以用Xilinx ISE中的Architecture Wizard直接生成。
XILINX是一家什么公司?
Xilinx(赛灵思)是全球领先的可编程逻辑完整解决方案的供应商。Xilinx研发、制造并销售范围广泛的高级集成电路、软件设计工具以及作为预定义系统级功能的IP(Intellectual Property)核。客户使用Xilinx及其合作伙伴的自动化软件工具和IP核对器件进行编程,从而完成特定的逻辑操作。Xilinx公司成立于 1984年,Xilinx首创了现场可编程逻辑阵列(FPGA)这一创新性的技术,并于1985年首次推出商业化产品。目前Xilinx满足了全世界对 FPGA产品一半以上的需求。Xilinx产品线还包括复杂可编程逻辑器件(CPLD)。在某些控制应用方面CPLD通常比FPGA速度快,但其提供的逻辑资源较少。Xilinx可编程逻辑解决方案缩短了电子设备制造商开发产品的时间并加快了产品面市的速度,从而减小了制造商的风险。与采用传统方法如固定逻辑门阵列相比,利用Xilinx可编程器件,客户可以更快地设计和验证他们的电路。而且,由于Xilinx器件是只需要进行编程的标准部件,客户不需要象采用固定逻辑芯片时那样等待样品或者付出巨额成本。Xilinx产品已经被广泛应用于从无线电话基站到DVD播放机的数字电子应用技术中。传统的半导体公司只有几百个客户,而Xilinx在全世界有7,500多家客户及50,000多个设计开端。其客户包括Alcatel,Cisco Systems,EMC,Ericsson,Fujitsu,Hewlett-Packard,IBM,Lucent Technologies,Motorola,NEC,Nokia,Nortel,Samsung,Siemens,Sony,Oracle以及Toshiba。
总部设在加利福尼亚圣何塞市(San Jose)的Xilinx公司是NASDAQ上市公司,代码为XLNX。Xilinx公司在全世界约有2,600名员工,其中约一半是软件开发工程师。尽管经济发展迟缓,科技界发展疲软,Xilinx 2003财政年度公司财政收入稳定。Xilinx 目前被广泛认为是半导体行业中管理最佳,财务状况良好的高科技企业。在财富杂志(Fortune Magazine)2003年“100家最适合工作的企业”排名中,Xilinx 名列前列,并被广泛认为是半导体行业中管理最佳,财务状况良好的高科技企业。旧金山编年史(San Francisco Chronicle)也把Xilinx 选为矽谷最适合工作的五十家公司之一。Xilinx 在Business Week S&P500表现最佳的50家公司中名列前列,并被福布斯杂志(Forbes)评为400个最佳的大公司之一。Xilinx 两家客户Cisco及Lucent,选出 Xilinx 是他们公司年度供应商。
参考 :
1.百度百科 :http://baike.baidu.com/view/392388.htm
2.xilinx官网 :http://www.xilinx.com
http://china.xilinx.com
倒底是Altera的FPGA好,还是 Xilinx的FPGA好
本人用过cyclone和spartan系列的FPGA,现就开发工具及开发流程对这两家FPGA进行对比。[神马] 一、 开发工具Altera的开发工具有Quartus II 、Sopc builder、Nios II、signal tap II、DSP Builder;Xilinx的开发工具有ISE、EDK、SDK、ChipScope 、System Generator;Quartus II相对于ISE,都是逻辑设计软件,功能相当;Sopc builder相对于EDK,用来建立软核,Sopc builder是生成bsf文件与quartus接口,生成ptf文件与nios接口,而edk则可直接生成目标文件(bit),而且还可以用EDK进行软件设计,也就是说EDK可以不依赖ISE和SDK就可独立完成一个设计。相比之下EDK要胜sopc builder一筹。Nios II相对于SDK,两者功能相当,而且界面相似度达到99%。用SDK进行软件开发比在EDK中还是要好一些,界面比EDK中的友好。signal tap II相对于ChipScope,嵌入式逻辑分析仪,方便调试;DSP Builder相对于System Generator用来建立DSP的算法模块。由于没用过ChipScope和System Generator,所以不做分析。 二、 开发流程先说说ALTERA的SOPC开发流程硬件设计首先,通过QUARTUS II建立工程,新建一个Block Diagram/Schematic File文件;再打开SOPC Builder建立CPU系统,添加IP,点击Genenater生成.bsf和.ptf目标文件;再回到QUARTUS II,将bsf文件导到入Schematic中,分配引脚,编译生成sof和pof文件。硬件设计算是完成。软件设计打开nios II,新建工程,select target hardware为前面生成的pft文件,建立软件程序,编译生成elf文件。下载调试先通过JTAG接口下载sof文件(硬件),再下载elf文件查运行或debug。固化通过AS接口下载POF文件,再通过JTAG下载ELF文件。 再看看xilinx 的sopc开发流程硬件设计打开EDK,建立CPU系统,添加IP,点击update bitstream,生成硬件bit流文件。 软件设计方式一、在EDK里添加C代码,将软件与硬件合成一个bit文件,这样程序在片内运行,适合于比较小的程序。方式二、在EDK里添加C代码,硬件生成bit文件,软件生成elf文件,bit下载到片内,elf下载到片外。方式三、在SDK里进行软件设计,同样生成elf文件,界面比edk的要友好。 下载调试与固化 如果软件与硬件合成了一个bit文件,则只需要下载和固化mcs(bit转化而来)文件了。如果软件比较大,则需要分两次下载,bit下载到片内,elf下载到片外,若要固化到flash里,则还需要在edk里添加bootloader代码,将其与硬件合成一个bit文件。再将bit转化为mcs后固化到FPGA配置芯片里,elf文件下载到片外flash里。 从开发流程来看, EDK可以不依赖ISE就能完成SOPC的设计,当然它也可以像altera那样,将cpu软核导入到ise中去。由此看来,xilinx的开发流程更加的灵活,相比altera要强大。
Xilinx和Altera哪个高端的FPGA性能好一些
本人用过cyclone和spartan系列的FPGA,现就开发工具及开发流程对这两家FPGA进行对比。[神马] 一、 开发工具Altera的开发工具有Quartus II 、Sopc builder、Nios II、signal tap II、DSP Builder;Xilinx的开发工具有ISE、EDK、SDK、ChipScope 、System Generator;Quartus II相对于ISE,都是逻辑设计软件,功能相当;Sopc builder相对于EDK,用来建立软核,Sopc builder是生成bsf文件与quartus接口,生成ptf文件与nios接口,而edk则可直接生成目标文件(bit),而且还可以用EDK进行软件设计,也就是说EDK可以不依赖ISE和SDK就可独立完成一个设计。相比之下EDK要胜sopc builder一筹。Nios II相对于SDK,两者功能相当,而且界面相似度达到99%。用SDK进行软件开发比在EDK中还是要好一些,界面比EDK中的友好。signal tap II相对于ChipScope,嵌入式逻辑分析仪,方便调试;DSP Builder相对于System Generator用来建立DSP的算法模块。由于没用过ChipScope和System Generator,所以不做分析。 二、 开发流程先说说ALTERA的SOPC开发流程硬件设计首先,通过QUARTUS II建立工程,新建一个Block Diagram/Schematic File文件;再打开SOPC Builder建立CPU系统,添加IP,点击Genenater生成.bsf和.ptf目标文件;再回到QUARTUS II,将bsf文件导到入Schematic中,分配引脚,编译生成sof和pof文件。硬件设计算是完成。软件设计打开nios II,新建工程,select target hardware为前面生成的pft文件,建立软件程序,编译生成elf文件。下载调试先通过JTAG接口下载sof文件(硬件),再下载elf文件查运行或debug。固化通过AS接口下载POF文件,再通过JTAG下载ELF文件。 再看看xilinx 的sopc开发流程硬件设计打开EDK,建立CPU系统,添加IP,点击update bitstream,生成硬件bit流文件。 软件设计方式一、在EDK里添加C代码,将软件与硬件合成一个bit文件,这样程序在片内运行,适合于比较小的程序。方式二、在EDK里添加C代码,硬件生成bit文件,软件生成elf文件,bit下载到片内,elf下载到片外。方式三、在SDK里进行软件设计,同样生成elf文件,界面比edk的要友好。 下载调试与固化 如果软件与硬件合成了一个bit文件,则只需要下载和固化mcs(bit转化而来)文件了。如果软件比较大,则需要分两次下载,bit下载到片内,elf下载到片外,若要固化到flash里,则还需要在edk里添加bootloader代码,将其与硬件合成一个bit文件。再将bit转化为mcs后固化到FPGA配置芯片里,elf文件下载到片外flash里。 从开发流程来看, EDK可以不依赖ISE就能完成SOPC的设计,当然它也可以像altera那样,将cpu软核导入到ise中去。由此看来,xilinx的开发流程更加的灵活,相比altera要强大。
Linux主要应用在哪些领域
Linux操作系统主要有以下三大应用领域:
1. Linux作为企业级服务器的应用
Linux系统可以为企业架构WWW服务器、数据库服务器、负载均衡服务器、邮件服务器、DNS服务器、代理服务器、路由器等,不但使企业降低了运营成本,同时还获得了Linux系统带来的高稳定性和高可靠性,且无须考虑商业软件的版权问题。
2. 嵌入式Linux系统应用领域
由于Linux系统开放源代码,功能强大、可靠、稳定性强、灵活而且具有极大的伸缩性,再加上它广泛支持大量的微处理体系结构、硬件设备、图形支持和通信协议,因此,在嵌入式应用的领域里,从因特网设备(路由器、交换机、防火墙,负载均衡器)到专用的控制系统(自动售货机,手机,PDA,各种家用电器),LINUX操作系统都有很广阔的应用市场。特别是经过这几年的发展,它已经成功地跻身于主流嵌入式开发平台。
3. 个人桌面Linux应用领域
所谓个人桌面系统,其实就是我们在办公室使用的个人计算机系统,例如:Windows xp、windows 7、Mac等。Linux系统在这方面的支持也已经非常好了,完全可以满足日常的办公及家长需求。