可靠性预计

时间:2024-06-18 18:46:20编辑:分享君

结构可靠度的展望

目前结构可靠度计算中采用的一次二阶矩法,对于各种作用效应和结构抗力等基本变量都是作为随机变量处理的,实际上各种作用与时间有密切关系,故应按随机过程考虑。计算的结构可靠度实际是静态下的结构构件的可靠度,所以还应当研究整个结构体系的可靠度和动态条件下的结构或构件的可靠度。此外,各种作用效应随机组合问题和相互依存影响问题,均有待进一步的研究。在基于概率理论的设计方法中,还应扩展到包括人为错误在内的总误差和管理领域等的研究。

可靠性设计的分析

通过设计实现产品可靠性指标的方法。产品的可靠性是通过设计、生产和管理而实现的,而首先是产品的设计。它决定着产品的固有可靠性。电子产品可靠性设计技术包括许多内容,主要有可靠性分配、可靠性预测、冗余技术、漂移设计、故障树分析和故障模式、效应和致命度分析、元件器件的优选和筛选、应力-强度分析、降负荷使用、热设计、潜在通路分析、电磁兼容和设计评审等。可靠性分配根据用户对系统或设备提出的可靠性指标,对分系统、整机等组成部分提出相应的可靠性指标,逐级向下,直到元件、器件、工艺、材料等的可靠性指标。可靠性分配是系统或设备的总体部门的一项可靠性设计任务。对于有L个组成成分的系统,最简单的情况是这些组成成分的可靠性是互相独立的。若第i组成分不可靠,则系统就不可靠,系统可靠性为q=q1q2…qL 〔若第i组成分的不可靠性为Pi=1-qi,则系统的不可靠性为P=1-q=1-(1-P1)(1-P2)…(1-PL)≈P1+P2+…+PL〕。这是系统可靠性分配的基本公式。可靠性分配本质上不是数学问题,而是人力、物力的统一调度和运用的工程管理问题。因为不同整机、元件、器件的现实可靠性水平是很不相同的,而把它们的可靠性提高到一定水平所需要的人力、物力和时间往往差别很大,因而不能采取均匀提高的纯数学方案。在实际工作中,需进行多个方案的协调、比较后才能决定。可靠性预测主要是根据电子元件、器件的故障和产品设计时所用的元件、器件数和使用条件,对产品的可靠性进行估计。最简单的情况是:产品由k种电子元件、器件组成,第i种元件、器件的寿命为指数分布,故障率为λi,用量为ni。任一元件和器件发生故障都会引起产品故障,故产品的故障率为λ=n1λ1+n2λ2+…+nkλk这是在设计阶段根据元件、器件的故障率对产品故障率提出预测的基本公式。在实际使用时,还要增加一些修正和补充。元件、器件的故障率还会随环境和其他条件而发生变化。若实验室条件下的元件、器件的故障率,则在环境A下的故障率为式中为元件、器件在环境A下的环境因子。在恶劣环境下,环境因子值可能很大。例如,导弹发射环境下的环境因子可能达到20~80。用预测公式测得的λ值还需要乘上一个修正因子(1+α)。对于比较成熟的设计,α可取10%左右;对不太成熟的设计,α可取30%以上。预测的故障率与实际投入使用后的现场故障率有一些差异是正常的。事实上,在设计阶段可靠性预测主要是相对可靠性,而不是绝对可靠性。冗余技术当产品设计中发现某个组成部分的可靠性过低,影响产品的总可靠性指标时,便采取所谓冗余技术来提高这一部分的可靠性。有k个组成部分的产品,各组成部分的可靠性是互相独立的。若其中一个部分出故障,产品就出故障,则这些组成部分构成一个可靠性串联系统。若产品的第i部分的可靠性为qi,则产品的可靠性q=q1q2…qk;若其中的一个部分不出故障,产品就能完成预定任务,则这些组成部分构成一个可靠性并联系统。这时,q=1-(1-q1)(1-q2)…(1-qi)。如果k=2,q1=q2=0.99,则组成可靠性并联系统后,q=0.9999。即经可靠性并联后大大提高了可靠性。所谓“多数表决”冗余技术,是只要k个组成部分中多数不出故障,产品就能完成预定任务。一般说来,很少使用整机作为冗余的组成部分,通常是对整机的薄弱环节进行冗余处理。漂移设计元件、器件的性能参数容许有一定的散布。其上限为上公差,下限为下公差。随着出厂时间的增加,性能参数产生漂移。温度和其他环境条件的变化也会造成参数漂移。只要元件、器件的漂移不超过公差的上、下限,就是合格的。电路的设计应该是,只要所用的元件、器件性能参数在规定的容许上、下限以内,电路的性能参数就应该是合格的,即使元件、器件的参数值到了规定容许的上、下限的边缘,也应如此,这称为电路的漂移设计。在满足元件、器件规定容许的上、下限前提下,在理论分析上,元件、器件有一些最坏组合,使电路的性能参数产生最大的偏离。如果这些最坏组合产生的电路仍能满足要求,则电路就满足漂移设计要求,这也可以通过最坏组合的实际电路加以验证,称漂移试验。但是,最坏组合方法往往偏于过分保守。如果能知道元件、器件性能参数的概率分布,则可以分析出电路性能参数的概率分布,从而作漂移分析和漂移试验,这称为概率法。这往往比最坏组合法更符合实际情况。故障树分析1975年在美国Berkeley的加利福尼亚大学召开了一次盛况空前的可靠性学术会议。会议上把故障树分析技术和可靠性理论并列为两大进展,认为后者主要是数学家和概率论统计学家推动发展起来的,而前者则是工程师们推动发展起来的,两者的侧重点不同但是实质一样的。故障树分析是美国贝尔实验室1961年首创的一种系统分析方法。其优点是较易处理复杂系统,容易发现可能导致系统出现故障的情况,有利于消除潜在故障。在设计阶段,它有助于发现系统的薄弱环节,是改进和提高设计可靠性的有力工具。故障树是一种树状的逻辑因果关系图,它利用一系列符号和逻辑门来描述各种事件之间的因果关系,使人们对这些关系一目了然。例如,基本事件的符号为○、结果事件的符号为嘑。逻辑门的输入事件为因,输出事件为果。以某房间照明系统为例,其原理和故障树如图。故障树的定量分析是根据基本事件出现的概率,计算出系统不希望发生的故障事件的出现概率,定量地计算出系统薄弱环节的不可靠性,找出对系统可靠性有关键作用的元件、部件,通常是从求最小割集着手。一个最小割集包括若干个基本事件。如果这些基本事件都出现,系统就出故障。只要其中有一个不出现,割集中的其他基本事件都出现也不会使系统出故障。寻找所有最小割集的方法很多,但都未彻底解决工作量随基本事件数的增加而指数增大这一困难。一个系统的故障树是一本很好的故障维修指南。它能使维修人员迅速发现故障,进而迅速排除故障。故障模式、效应、致命度分析这种分析方法是将系统分成若干个组成部分。如果发生故障,分析它属于哪种故障模式(不必一定查清故障的确切原因);分析各组成部分可能出现的故障模式对系统有什么影响;对各种故障模式的影响进行半定性半定量的评价,对那些具有致命性影响的故障模式制定适当的解决措施或改进设计方案。这种分析方法是由系统的基本故障事件上推到系统故障,而傅里叶变换则是由系统故障下推到基本故障事件。两者结合起来,相辅相成,可以在设计阶段找出潜在的可靠性问题。元件、器件的可靠性可靠性质量保证体系的元件、器件的可靠性部门,通过调查研究制订出本部门的元件、器件优选目录,尽量压缩元件、器件的品种、规格和生产厂点。设计人员不得选用目录以外的元件、器件。如果设计人员认为必须选用目录外的元件、器件,则应经过元件、器件可靠性部门调查试验认为可用后,再正式补入目录,以备选用。元件、器件可靠性部门与生产厂保持密切的联系,监督元件、器件生产质量的一致性和稳定性。必要时,派出专人监督本部门定购批次的生产。不论对元件、器件的生产过程如何严格控制,材料、工艺、生产环境等并不能绝对一致。因此,不可避免地有一部分产品会存在一些潜在的缺陷和弱点。这些有缺陷和弱点的电子元件、器件的平均寿命比正常产品的平均寿命短得多,使电子元件、器件的早期故障率较高。如果对电子元件、器件不加处理就装入整机,便会使整机的早期故障率大大增加。因此,在把电子元件、器件装入整机前,应采取施加强应力或其他手段,尽可能地剔除这种早期故障的产品。这就是电子元件、器件的可靠性筛选。筛选所加的强应力,可以是电的、热的、机械的或综合的。筛选项目须根据元件、器件的主要故障模式和故障机理,结合元件、器件的工艺设计、结构材料以及质量控制的情况而定。筛选不是提高产品的可靠性,它只能排除早期故障产品,使产品恢复其固有可靠性,但不能提高固有可靠性。如果元件、器件的筛选淘汰率较高,则说明设计、工艺或生产管理上存在较多问题,不易筛选彻底。这样的元件和器件不宜用于高可靠性要求的部位。元件、器件可靠性部门应根据本部门的需要制订元件、器件筛选条例,并规定出容许的筛选淘汰率。在一般情况下,元件、器件出厂越久,可靠性也就越低。因此,元件、器件可靠性部门应在调查研究和进行必要的试验后,制定元件、器件保管和保管年限条例。应力-强度分析产品所受的应力x是广义的,它不仅包括张力、扭力矩等,还包括如温度、真空度等因素。产品的强度Y也是广义的。若Z=Y-X,当ZμX的程度),而且还决定于σX及σY的大小。提高可靠度有两种途径:①使μY比μX大,即让平均强度远超过平均应力;②使σX与σY尽可能小,即严格控制产品强度的散布(往往须通过严格控制原材料和加工精度才能达到)和应力的散布(即进行环境设计)。在19世纪后期,习惯上把μY/μX称为产品的安全系数。安全系数大,μY大于μX,可靠度可以有所提高。但这不是决定可靠性的唯一因素。如果对σX、σY不加控制,单纯提高安全系数不一定能提高可靠性。因此,传统的安全系数只反映了可靠度的一个方面,而不是全部。当X或Y不是正态分布的随机变量时,可靠性的解析式就比较复杂。蒙特卡罗法是分析这些较复杂情况下可靠性的有效方法之一。电子元件、器件的负荷,就是施加于元件、器件的一种应力。降负荷使用元件、器件就是提高元件、器件的安全系数,从而可以在一定程度上提高元件、器件的可靠性。例如,某些电容器的故障率基本上正比于工作电压V的5次方,就是电容器故障率的5次幂法则。使用的工作负荷与额定负荷之比称为降负荷系数。可靠性质量保证系统的元件、器件可靠性部门,应根据本部门特点制订降负荷系数要求。例如,一个有代表性的要求是,碳膜电阻和金属膜电阻的使用功率不应达到额定功率的一半。热设计使电子元件、器件在较低温度下工作有三个好处:①参数漂移较小,电气性能容易稳定;②故障率较低;③机械应力较小,金属化接点等的蜕化较慢,寿命较长。因此,需要根据热量传播的规律,研究作为热源的元件、器件的合理布局;采取什么降温措施可使设备的局部温升不会过高,以保证设备的可靠性。这称为热设计。在简单的情况下可利用自然冷却,但能力有限。当功率密集度较大时,应采取强迫通风冷却和水冷等措施。潜在通路分析潜在通路会在所有元件、器件工作正常的情况下导致出现不需要的功能,或使需要的功能受到抑制。潜在通路分析一般在设计阶段后期或设计文件完成之后进行。设计评审在设计的每一阶段结束之前,由负责设计的部门组织有关专家对设计文件从保证可靠性要求的各种角度和各个方面进行评定和审查。实际上,这是一种组织专家协助做好可靠性设计的一种技术评定会。由于可靠性设计牵涉的面太广,凭设计人员个人的知识进行最佳的可靠性设计已不可能。因此,设计评审是一种有效的提高可靠性的补救办法。

或有负债符合一定条件时,企业也不应将其确认为负债吗?

“或有负债符合一定条件时,企业应将其确认为负债”。的确玩的是文字游戏,该句中的“其”是指“或有负债”,含义是企业应将“或有负债”确认为负债,当然是错的。
换一个好理解点的:“不满14周岁的人实施危害社会的行为,不负刑事责任”。如果说“不满14周岁的人实施危害社会的行为,符合一定条件时,应当追究其刑事责任”明显不对了。如果把这儿“符合一条件”理解为“这人满了14周岁”就该负刑事责任就很是牵强了哈。因其“符合”这个“条件”时已是另一对象范围,不再是“不满14周岁”了。


系统可靠性分配指什么?

为了提高可靠性指标分配的合理性和可行性,在进行产品设计时具有指导意义,进行可靠性指标分配时应充分利用可靠性分配原则。如果分配的结果不能保证其准确性,应突出各部组件的相对可靠程度,以使设计人员在设计中有的放矢。 可靠性分配原则如下:
1) 复杂的系统或产品分配较低的可靠性指标;
2) 技术上不成熟的产品分配较低的可靠性指标;
3) 工作环境恶劣的产品分配较低的可靠性指标;
4) 功能重要(重要度高)的产品分配较高的可靠性指标;
5) 工作时间长的产品分配较低的可靠性指标;
6) 不易维修、更换的产品分配较高的可靠性指标。
可靠性分配是一个综合权衡过程,为实现系统设计优化,还应考虑其它约束条件,如经济性等。在进行可靠性分配时,应考虑根据实际情况对上述原则进行适当的剪裁,特别是对于约束条件的处理,可以根据实际情况增加分配原则。应允许承制方对系统以下各层次的指标灵活地分配,但这些分配值经过相互补偿应能够达到系统要求。如果分配的总指标超出了目前技术发展水平和费用约束的现实的定量与定性要求,根据相关的程序,重新确定要分配的总指标或调整其它约束条件。目的是使最终的分配结果做到技术上合理、经济上效益高、时间方面见效快等等。


系统可靠度分配的原则有哪些

为了提高可靠性指标分配的合理性和可行性,在进行产品设计时具有指导意义,进行可靠性指标分配时应充分利用可靠性分配原则。如果分配的结果不能保证其准确性,应突出各部组件的相对可靠程度,以使设计人员在设计中有的放矢。 可靠性分配原则如下:
1) 复杂的系统或产品分配较低的可靠性指标;
2) 技术上不成熟的产品分配较低的可靠性指标;
3) 工作环境恶劣的产品分配较低的可靠性指标;
4) 功能重要(重要度高)的产品分配较高的可靠性指标;
5) 工作时间长的产品分配较低的可靠性指标;
6) 不易维修、更换的产品分配较高的可靠性指标。
可靠性分配是一个综合权衡过程,为实现系统设计优化,还应考虑其它约束条件,如经济性等。在进行可靠性分配时,应考虑根据实际情况对上述原则进行适当的剪裁,特别是对于约束条件的处理,可以根据实际情况增加分配原则。应允许承制方对系统以下各层次的指标灵活地分配,但这些分配值经过相互补偿应能够达到系统要求。如果分配的总指标超出了目前技术发展水平和费用约束的现实的定量与定性要求,根据相关的程序,重新确定要分配的总指标或调整其它约束条件。目的是使最终的分配结果做到技术上合理、经济上效益高、时间方面见效快等等。


可靠性设计软件有哪些

可以看看可靠性设计分析系统PosVim。国内开发的。
宝顺的产品可靠性设计与分析系统PosVim,以国际先进的模型化设计分析思想为指导,解决产品可靠性工程问题为主旨,严格控制和降低产品质量风险为根本出发点的集成化设计分析平台。
PosVim包含设计分析、仿真、试验、数据应用4大子系统,功能涵盖:
l 可靠性预计(预测)、
l 可靠性建模、FMEA、
l FTA(故障树分析)、
l 容差分析(含最坏情况仿真分析,SPICE模型)、
l 降额设计分析(兼容ECSS标准和GJB35)、
l 可靠性分配、
l 维修性预计与分配、
l 测试性建模与分析(兼容多信号模型、仿真)、
l 疲劳寿命分析(具备应力寿命分析、拉伸寿命分析、焊接结构疲劳分析、裂纹增长寿命分析、腐蚀疲劳寿命分析)、
l 失效物理仿真分析(热、机械、电应力下板、组件的故障分析、寿命分析)、
l 故障诊断与寿命预测分析、
l 保障性仿真、
l 概率风险评价、
l 安全研制保障等级分析、
l 多物理环境建模、
l 加速寿命试验设计分析、
l 加速退化试验设计分析、
l 威布尔分析、
l 数据挖掘应用等30多个功能模块.
具备故障逻辑分析与故障物理分析、统计与仿真验证分析、通用与专业性(如相控阵雷达等专用模型与方法)设计分析、宏观与微观分析等多个层面、多个角度的可靠性设计分析能力,是真正意义上实现产品设计与可靠性设计融为一体、能够充分体现可靠性设计分析价值的工作平台。
PosVim的功能覆盖产品全生命周期的可靠性工作项目,可满足大至体系、小至元器件或材料的可靠性设计分析工程需求,能够快速帮助企业找出设计的薄弱环节(短板),并实现优化设计,提升产品的可靠性水平。
目前开放了试用版申请,可以去官网首页http://www.baoshunkj.cn,申请试用。


以前和现在在工程中的可靠性设计方法有哪些???

首先,要分析你所面向的是什么类型的工程。可靠性是研究电子装备故障发展起来的学科,可靠性工程也主要面向电子信息产品和军工机电武器装备。而许多人把工程理解为建筑工程,那里当然也有可靠性问题,但对那些工程的可靠性设计恐怕以保证合理的安全系数为主攻方向。而电子信息产品的可靠性设计内容比较丰富,按照有关标准,首先要制定可靠性大纲,由大纲规定产品的可靠性指标、开发过程和使用期间应该做哪些可靠性工作,在什么阶段做,由谁做谁验收,需要投入多少资源等等。然后由各有关部门协同计划部门把可靠性工作编制到产品工作计划中去,以便落实。 对于产品设计人员需要做的可靠性设计工作主要有:可靠性定量指标按产品级别进行分配,由总体直到单元(电路板),单元设计人员在完成电路性能指标设计的过程中落实可靠性设计工作,要运用“简单、成熟”的原则,尽量简化电路减少元器件的数量,选取元器件时要运用降额设计方法,选用成熟的通用化标准化的元器件,并将每个元器件的失效率数据填入元器件表中。然后要按照有关标准提供的公式计算该单元的可靠性设计值,从单元直至总体计算出整机的可靠性设计值,然后与分配的指标进行比较,如果没有达到要求则需要进行设计改进(进一步减少元器件数量,如果不能减少,则选取失效率等级更优的元器件;如果仍然达不到要求,则可以采取并联冗余设计方法,直至满足要求为止)。就一般设计过程而言,设计师需要掌握的可靠性设计技术主要有:可靠性分配和可靠性预计两项计算工作,可靠性降额设计和热设计方法,熟悉可靠性预计手册(查元器件失效率和计算公式)。如果需要开展可靠性增长和鉴定试验,设计师需要配合有关部门熟悉试验标准和试验方法,处理试验中产品的性能测试和暴露的故障。改进设计是可靠性增长的主要手段,设计师责无旁贷。 如果还需要进一步了解,本网友是电子信息系统可靠性专家,愿意帮助。


电脑的平均无故障运行时间是怎么测量的?

MTBF,即平均无故障时间,英文全称是“Mean Time Between Failure”。
是衡量一个产品(尤其是电器产品)的可靠性指标。单位为“小时”。它反映了产品的时间质量,是体现产品在规定时间内保持功能的一种能力。具体来说,是指相邻两次故障之间的平均工作时间,也称为平均故障间隔。它仅适用于可维修产品。同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF。



产品的MTBF浅谈

摘要

MTBF是当前各行业产品的重要可靠性指标,它标识了产品的平均无故障工作时间。本文讨论了MTBF对于产品的真正意义,并从可靠性工程角度出发分析了获得产品MTBF的方法和技术应用。

前言

在电子工业界,几乎每个人都熟悉术语"平均无故障工作时间"(MTBF)。但是,这个术语经常被错误地解释和误用。特别是在产品被发运、失效报告被送到目的地和MTBF预计值没有被实际失效报告的造表确认时,确实如此。

今年初,XXXX PC顺利通过了国家MTBF标准测试,平均无故障工作时间达6万小时,从而再度刷新了由其自己创造的"世界纪录"。那么,这里电脑的MTBF为6万小时对消费者而言究竟意味着什么?

1.可靠性的定义

在我们考虑可靠性预计之前,让我们来看看可靠性的定义。普遍被接受的可靠性的定义是产品在其指定应用环境条件下和在规定时间内正常工作的概率。这就涉及到两个判断问题:

1/ 怎样才算"正常工作"?

2/ 什么是"指定的应用条件"?

如果一台汽车的收音机具有合适的AM接受功能,但不能接收FM电台,是不是整台汽车不可靠?

如果某司机驾驶汽车通过积水的道路,在行进过程中汽车突然走不动,是不是说明汽车不可靠?

上述两个问题的回答当然是否定的。因此,可靠性工程师在计算MTBF之前应对各种不同类型的问题进行分类。

2.通过预计计算来得到MTBF

有几个个普遍被接受的标准可用来计算MTBF。大多数军品规划都用最新版本的MIL-STD-217 FN2和GJB 299B,而许多商用产品规划则用Bellcore方法来计算MTBF。MIL-STD-217 FN2是美国可靠性分析中心和罗姆试验室多年开展的工作总结为依据的,GJB 299B是中国国内自己的预计标准,而Bellcore版本则是贝尔电信研究公司即现在的Telcordia Technologies公司对该手册进行修改和简化而成的。

每个标准都包括用于典型电子产品中元器件的失效率模型,比如IC、二极管、晶体管、电容器、继电器、开关和连接器。失效率是以实际应用中获得的最适用的数据为依据的。这两种方法之间有几个不同点,其中最明显的一个不同点是失效率的表示法,MIL-STD-217和GJB 299B中都将失效率表示为失效次数/106h,而Bellcore失效率表示为失效次数/109h。

作为MTBF计算的实例,应假定一个具有4个元器件的产品。对这些元器件在给定温度下估计出的失效数/106h应从制造商那里获得。加入估计出的失效率,我们就得到整个产品的失效率。为了测定MTBF,我们用106除于产品的失效率,这样就能估计出两个失效数之间的平均小时数(见表 1)。

表 1 典型的产品MTBF计算

元器件 数量 失效率(失效次数/106h)
A 1 0.50
B 1 0.30
C 1 0.15
D 1 0.05
总失效率=1.00/106hMTBF估计=106/1.00=1,000,000h


尽管多数MTBF预计值是以单一产品为依据的,但表示结果的较理想的方法是以100或1000个产品为依据的。如果我们有个产品失效率/106h,那么,100个产品就有100个产品的失效率/106h。那么,在上例中,100件的MTBF被预计为10,000h。

在这点上,必须作一些假定,并与计算一起用文件来证明:

元器件具有一致的可靠性,尽管我们知道有差别

元器件数是正确的,尽管设计可能未完成

4个元器件的估计失效率是有效的失效率,尽管我们知道它们只是估计值

我们确定元器件失效的工作温度对于我们的应用来说是正确的

预计产品的MTBF有两个好处。首先,这样可满足客户的要求;其次,这种预计是在设计方案用于生产之前要花较长时间来做的工作,它甚至揭示产品的弱点,这样就可使制造商以最少的费用来对这些弱点进行改进。

随着科技进步和软件行业的迅速发展,当代的可靠性工程师可利用软件来简化可靠性计算。计算机使人们能选择诸如工作电压和工作温度之类的应力等级来模拟产品将要经受的实际工作条件。

3.通过失效报告来评估失效率

产品已经交付使用几个月之后,真实情况初见端倪。失效报告所显示的失效率可能高于或低于预计值。如果是这样,那是什么原因?是否意味着你的MTBF计算是一个无效的过程?答案是否定的。如果失效在几个小数点内匹配,这是否意味着不必分析现场失效报告?答案同样是否定的。失效分析的两种方法都是重要的,任何重大差别都是有其原因的。

让我们回到可靠性的定义和2个判断条件上来:

怎样就是被定义为失效的非正常工作?

产品被设计用于临界范围内吗?工作环境条件是怎样的?产品交付之后经受过静电放电吗?

产品是否曾跌落或搬运不当而造成失效?

造成可靠性预计变量的另一个因素是元器件失效率的难于避免的差异,这些元器件看起来相同和来自同一厂家。请记住,那些失效率是以平均值而非绝对值为根据的。

4.MTBF对产品的含义

XXXX电脑的MTBF值高达6万小时,这无疑成为业界品质标准的一面旗帜,但它能为用户带来怎样的价值呢?

据了解,国家标准GB9813-2000中对电脑的MTBF要求为4000小时。如果采用国标标准,电脑每天24小时不停使用,平均167天(近半年)电脑即会发生一次重大故障,就要进行一次维修;如果是MTBF值为10000小时,就相当于1年多维修一次;6万小时就相当于不停使用近7年才维修一次。

以假定的适当计算和修正来获取产品的MTBF预计是一种很好的工程方法。它可在设计完成和强调问题方面之前就评价你的产品。这对于你的潜在客户是非常有价值的,有助于在合同签订之前评价供货商和设计,有助于现场产品保障的后勤计划的制订。

当现场失效报告出来和看起来MTBF估计值有错时,这是检查判断条件大好的时机。失效定义是否真的有效?不需要责备估计值。当可靠性成为争论焦点时,应采用一切有效的工具来解决。


电脑的平均无故障运行时间是怎么算的

MTBF,即平均无故障时间,英文全称是“Mean Time Between Failure”。
是衡量一个产品(尤其是电器产品)的可靠性指标。单位为“小时”。它反映了产品的时间质量,是体现产品在规定时间内保持功能的一种能力。具体来说,是指相邻两次故障之间的平均工作时间,也称为平均故障间隔。它仅适用于可维修产品。同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF。

指自动分析仪在校验期间的总运行时间(H)与发生故障次数(次)的比值,以“MTBF”表示,单位为:H/次。

随着伺服器的广泛应用,对伺服器的可靠性提出了更高的要求。所谓“可靠性”,就是产品在规定条件下和规定时间内完成规定功能的能力;反之,产品或其一部分不能或将不能完成规定的功能是出故障。概括地说,产品故障少的就是可靠性高,产品的故障总数与寿命单位总数之比叫“故障率”(Failure rate),常用λ表示。例如正在运行中的100只硬碟,一年之内出了2次故障,则每个硬碟的故障率为0.02次/年。当产品的寿命服从指数分布时,其故障率的倒数就叫做平均故障间隔时间(Mean Time Between Failures),简称MTBF。即: MTBF=1/λ 笔者最近看到一款可用于伺服器的WD Caviar RE2 7200 RPM 硬碟,MTBF 高达 120万小时,保修 5年。120万小时约为137年,并不是说该种硬碟每只均能工作137年不出故障。由MTBF=1/λ可知λ=1/MTBF=1/137年,即该硬碟的平均年故障率约为0.7%,一年内,平均1000只硬碟有7只会出故障。 上图所示为著名的“浴盆”曲线,左边斜线部分为早期故障率,其故障率一般较高且随着时间推移很快下降。曲线中部为使用寿命期,其故障率一般很低且基本固定。最右部为耗损期,失效率急速升高。电子产品制造商一般通过测试、老炼、筛选等手段将早期故障尽量剔除,然后提供给客户使用。当使用寿命期将尽,产品也即将进入故障高发期,需要报废或更新换代了。 温度与器件的寿命 明白了MTBF和“浴盆”曲线的基本概念,我们对评估产品的使用寿命有了一定的掌握。在合适工作条件下器件使用寿命期内的故障率很低。广大电子爱好者都知道电子元器件的寿命,与工作温度是有密切关系的。以电脑主板上常用的也常出故障的电解电容器为例,其寿命会受到温度的影响。因此,应尽可能使电容器在较低的温度之下工作,如果电容器的实际工作温度超过了其规格范围,不仅其寿命会缩短,而且电容器会受到严重的损毁(例如电解液泄漏)。因此,在分析电脑主板上电容器的工作温度时,不仅要考虑机箱内整体环境温度及电容器自身的发热,还要考虑机箱内其他发热元件的热辐射(特别是CPU、稳压器、电源供应器等)。 根据测试,通常2.0G的CPU消耗功率达56.7W,生成温度达70℃;而当频率提高至3.0G时, CPU温度往往超过90℃。在这样的高温烘烤下,主板上的电容器寿命会发生什么变化? 为简化起见,不考虑纹波、频率、ESR等因素,电容器的估计寿命可用下述公式表示: 其中,L0表示最高工作温度下的寿命,Tmax表示最高工作温度,Ta表示实际环境温度。由此可见,如果环境温度每升高10℃,电容器寿命将下降一倍! 由上图右面的曲线可明显看出,随着电容器工作环境温度的上升,其有效寿命急剧缩短。其中有效寿命(Useful life)是指该种电容器达到给定故障率的时间。


上一篇:想神马就有神马

下一篇:智能电网规划