半导体激光器的工作原理?
半导体激光器工作原理是激励方式,利用半导体物质(即利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈,产生光的辐射放大,输出激光。半导体激光器优点:体积小、重量轻、运转可靠、耗电少、效率高等。半导体激光器是依靠注入载流子工作的,发射激光必须具备三个基本条件:1、要产生足够的 粒子数反转分布,即高能态粒子数足够的大于处于低能态的粒子数;2、有一个合适的谐振腔能够起到反馈作用,使受激辐射光子增生,从而产生激光震荡;3、要满足一定的阀值条件,以使光子增益等于或大于光子的损耗。扩展资料:半导体激光(Semiconductor laser)在1962年被成功激发,在1970年实现室温下连续输出。后来经过改良,开发出双异质接合型激光及条纹型构造的激光二极管(Laser diode)等,广泛使用于光纤通信、光盘、激光打印机、激光扫描器、激光指示器(激光笔),是目前生产量最大的激光器。激光二极体的优点有:效率高、体积小、重量轻且价格低。尤其是多重量子井型的效率有20~40%,P-N型也达到数%~25%,总而言之能量效率高是其最大特色。另外,它的连续输出波长涵盖了红外线到可见光范围,而光脉冲输出达50W(脉宽100ns)等级的产品也已商业化,作为激光雷达或激发光源可说是非常容易使用的激光的例子。参考资料来源:百度百科——半导体激光器
光纤激光器的工作原理
光纤激光器的工作原理如下:由泵浦源发出的泵浦光通过一面反射镜耦合进入增益介质中,由于增益介质为掺稀土元素光纤,因此泵浦光被吸收,吸收了光子能量的稀土离子发生能级跃迁并实现粒子数反转,反转后的粒子经过谐振腔,由激发态跃迁回基态,释放能量,并形成稳定的激光输出。光纤激光器的工作原理主要基于光纤激光器的特殊结构。激光器是由工作物质、泵浦源和谐振腔三部分组成,具体作用如下:1、增益光纤为产生光子的增益介质。2、抽运光的作用是作为外部能量使增益介质达到粒子数反转,即泵浦源。3、光学谐振腔由两个反射镜组成,作用是使光子得到反馈并在工作介质中得到放大。扩展资料:光纤激光器的特点:1、光束质量好。光纤的波导结构决定了光纤激光器易于获得单横模输出,且受外界因素影响很小,能够实现高亮度的激光输出。2、高效率。光纤激光器通过选择发射波长和掺杂稀土元素吸收特性相匹配的半导体激光器为泵浦源,可以实现很高的光一光转化效率。对于掺镱的高功率光纤激光器,一般选择915纳米或975纳米的半导体激光器,荧光寿命较长,能够有效储存能量以实现高功率运作。3、散热特性好。光纤激光器是采用细长的掺杂稀土元素光纤作为激光增益介质的,其表面积和体积比非常大,约为固体块状激光器的1000倍,在散热能力方面具有天然优势。中低功率情况下无需对光纤进行特殊冷却,高功率情况下采用水冷散热,也可以有效避免固体激光器中常见的由于热效应引起的光束质量下降及效率下降。4、结构紧凑,可靠性高。由于光纤激光器采用细小而柔软的光纤作为激光增益介质,有利于压缩体积、节约成本。泵浦源也是采用体积小、易于模块化的半导体激光器,商业化产品一般可带尾纤输出,结合光纤布拉格光栅等光纤化的器件,只要将这些器件相互熔接即可实现全光纤化,对环境扰动免疫能力高,具有很高的稳定性,可节省维护时间和费用。参考资料来源:百度百科-光纤激光器
简述激光器的发光原理是什么?
产生激光的必不可少的条件是粒子数反转和增益大于损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。激光器中常见的组成部分还有谐振腔,但谐振腔( 见光学谐振腔)并非必不可少的组成部分,谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的方向性和相干性。而且,它可以很好地缩短工作物质的长度,还能通过改变谐振腔长度来调节所产生激光的模式(即选模),所以一般激光器都具有谐振腔。扩展资料:用途1、激光用作热源。激光光束细小 ,且带着巨大的功率,如用透镜聚焦,可将能量集中到微小的面积上,产生巨大的热量。比如,人们利用激光集中而极高的能量,可以对各种材料进行加工,能够做到在一个针头上钻200个孔。2、激光测距。激光作为测距光源,由于方向性好、功率大,可测很远的距离,且精度很高。3、激光通信。在通信领域,一条用激光柱传送信号的光导电缆,可以携带相当于2万根电话铜线所携带的信息量。4、受控核聚空中的应用。将激光射到氘与氚混合体中,激光所带给它们巨大能量,产生高压与高温,促使两种原子核聚合为氦和中子,并同时放出巨大辐射能量。由于激光能量可控制,所以该过程称为受控核聚变。参考资料来源:百度百科-激光器