海量数据存储

时间:2024-06-24 02:03:50编辑:分享君

海量数据存储有哪些方式与方法

杉岩海量对象存储MOS,针对海量非结构化数据存储的最优化解决方案,采用去中心化、分布式技术架构,支持百亿级文件及EB级容量存储,具备高效的数据检索、智能化标签和分析能力,轻松应对大数据和云时代的存储挑战,为企业发展提供智能决策。1、容量可线性扩展,单名字空间达EB级SandStone MOS可在单一名字空间下实现海量数据存储,支持业务无感知的存储服务器横向扩容,为爆炸式增长的视频、音频、图片、文档等不同类型的非结构化数据提供完美的存储方案,规避传统NAS存储的单一目录或文件系统存储空间无法弹性扩展难题2、海量小文件存储,百亿级文件高效访问SandStone MOS基于完全分布式的数据和元数据存储架构,为海量小文件存储而生,将企业级NAS存储的千万文件量级提升至互联网规模的百亿级别,帮助企业从容应对几何级增长的海量小文件挑战。3、中心灵活部署,容灾汇聚分发更便捷SandStone MOS支持多数据中心灵活部署,为企业数据容灾、容灾自动切换、多分支机构、数据就近访问等场景提供可自定义的灵活解决方案,帮助企业实现跨地域多活容灾、数据流转、就近读写等,助力业务高速发展。4、支持大数据和AI,统一数据存储和分析SandStone MOS内置文件智能化处理引擎,实现包括语音识别、图片OCR识别、文件格式转换等批量处理功能,结合标签检索能力还可实现语音、证件照片检索,从而帮助企业更好地管理非结构化数据。同时,SandStone MOS还支持与Hadoop、Spark等大数据分析平台对接,一套存储即可满足企业数据存储、管理和挖掘的需求。

 海量数据存储与管理

正如上述,在国土资源遥感综合调查信息中,既包含有多源、多时相、多尺度、多分辨率、多类型的遥感图像数据和基础地理数据,也包括在项目开展过程中衍生的许多观测和分析资料,数据量十分庞大。因此,根据数据共享的要求,在数据生产、管理、应用服务以及更新和维护过程中,如何组织和管理好这些海量数据,如何快速、全面有效地访问和获得所需数据,成为面临的突出问题。在这里,采用何种方式利用现有的大型商业化关系数据库系统高效地存储与管理这些数据,成为能否发挥系统最大性能的关键所在。传统的GIS系统对空间数据(与空间位置、空间关系有关的数据)的存储与管理大多采用这些商业软件特定的文件方式,如:ArcInfo的Coverage、MapInfo的Tab、MAPGIS的WL等。如果数据量越多,这些文件就会越大,数据的处理就会越复杂,其存储、检索、管理也就越困难,而且其最大的缺点还在于不能进行多用户并发操作。由此可见,用以往传统的存储机制去管理像遥感综合调查这样的海量数据,显然难以满足要求。而近年来发展起来的空间数据库引擎技术则是解决海量数据存储管理的途径之一。本系统建设过程中,采用了空间数据库引擎ArcSDE+大型关系数据库Oracle组合技术,较理想地实现了遥感综合调查海量数据的存储、检索、查询、处理。众所周知,Oracle提供了大型数据库环境,能够很好地处理海量数据,而ArcSDE可将具有地理特征的空间数据和非空间数据统一加载到Oracle中去,因此,通过ArcSDE空间数据库引擎,可将Oracle海量数据管理功能加载到GIS系统中,并可利用Oracle的强大管理机制进行高效率的事务处理、记录锁定、并发控制等服务操作。

强调研究如何储存和使用具有海量数据库的是什么数据库

数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。
在信息化社会,充分有效地管理和利用各类信息资源,是进行科学研究和决策管理的前提条件。数据库技术是管理信息系统、办公自动化系统、决策支持系统等各类信息系统的核心部分,是进行科学研究和决策管理的重要技术手段。


上一篇:中兴跳楼

下一篇:6800