十六进制数转换为二进制数怎么转换啊?
16进制转化2进制的表如下:扩展资料:十六进制定义:16进制每一位上可以是从小到大为0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F 16个大小不同的数,即逢16进1,其中用A,B,C,D,E,F(字母不区分大小写)这六个字母来分别表示10,11,12,13,14,15。十六进制背景:例如十进制数57,在二进制写作111001,在16进制写作39。在历史上,中国曾经在重量单位上使用过16进制,比如,规定16两为一斤。现在的16进制则普遍应用在计算机领域,这是因为将4个位元(Bit)化成单独的16进制数字不太困难。1字节可以表示成2个连续的16进制数字。可是,这种混合表示法容易令人混淆,因此需要一些字首、字尾或下标来显示。参考资料:百度百科-十六进制转换
进制转换怎么算
进制转换算法如下:1、十进制转二进制:十进制数除2取余法,即十进制数除以2,余数为权位上的数,得到的商值继续除2,以此步骤直到商为0为止。2、二进制转十进制:把二进制数按权展开,相加即得十进制数。3、二进制转八进制:3位二进制数按权展开相加得到1位八进制数(注:3位二进制转成八进制是从右到左开始转换,不足时补0)。4、八进制转二进制:八进制数通过除2取余数,得到二进制数,对每个八进制为3个二进制,不足时在最左边补0。5、二进制转十六进制:(与二进制转成八进制方法近似)十六进制是取四舍一(注:4位二进制转成十六进制是从右到左开始转换,不足时补0)。6、十六进制转二进制:十六进制数通过除2取余法,得到二进制数,对每个十六进制为4个二进制,不足时在最左边补0。7、八进制转十进制:把八进制数按权展开,相加即得到十进制数。8、十进制转八进制:将十进制数除以8,按权展开,直到商为0,然后将得到的各个余数从最后得到的那个开始向右排起就是八进制数。9、十六进制转八进制:先转成二进制,再转成八进制。10、八进制转十六进制:先转成二进制,再转成八进制。其他附加:二进制:Binary(B) 由0、1组成。八进制:Octal(O) 由0-7组成(逢8进1)。十进制:Decimal(D) 由0-9组成。十六进制:Hexadecimal(H) 由ABCDEF组成,对应10-15。
进制转换
方法为: 十进制数除2取余法,即十进制数除2,余数为权位上的数,得到的商值继续除,直到商为0。 例:十进制数 101 转成二进制为 1100101 方法为: 把二进制数按权展开、相加即得十进制数。 例:二进制数 1100101 转成十进制为 101 方法为: 八进制数通过对每个八进制数使用除2取余法,得到3个二进制数,不足三位时在最左边补零。 例:八进制数 135 转成二进制为 1011101 方法为: 每3位二进制数按权展开相加得到1位八进制数。(注意:3位二进制转成八进制是从右到左开始转换,不足时补0)。 例:二进制数 1011101 转成八进制为 135 方法为: 十六进制数通过除2取余法,得到二进制数,每个十六进制转为4个二进制,不足时在最左边补零。 例:十六进制数 369 转成二进制为 1101101001 方法为: 与二进制转八进制方法近似,八进制是取三合一,十六进制是取四合一。(注意事项,4位二进制转成十六进制是从右到左开始转换,不足时补0)。 例:二进制数 1101101011 转成十六进制为 36B (十六进制转十进制A=10,B=11... 以此类推) 方法一: 间接法 — 把十进制转成二进制,然后再由二进制转成八进制或者十六进制。这里不再做图片用法解释。 方法二: 直接法 — 把十进制转八进制或者十六进制按照除8或者16取余,直到商为0为止。(具体用法如下图) 例: 十进制数 136 转成八进制为 210 例: 十进制数 136 转成十六进制为 88 方法为: 把八进制、十六进制数按权展开、相加即得十进制数。(具体用法如下图) 例: 八进制数 125 转成十进制为 85 例: 十六进制数 31D 转成十进制为 797 八进制与十六进制之间的转换有两种方法 例: 八进制数 125 转成十六进制为 55 例: 八进制数 54 转成十六进制为 2C
各种进制转换方法
一)、数制 计算机中采用的是二进制,因为二进制具有运算简单,易实现且可靠,为逻辑设计提供了有利的途径、节省设备等优点,为了便于描述,又常用八、十六进制作为二进制的缩写。 一般计数都采用进位计数,其特点是: (1)逢N进一,N是每种进位计数制表示一位数所需要的符号数目为基数。 (2)采用位置表示法,处在不同位置的数字所代表的值不同,而在固定位置上单位数字表示的值是确定的,这个固定位上的值称为权。 在计算机中:D7 D6 D5 D4 D3 D2 D1 D0 只有两种0和1 8 4 2 1 二)、数制转换 不同进位计数制之间的转换原则:不同进位计数制之间的转换是根据两个有理数如相等,则两数的整数和分数部分一定分别相等的原则进行的。也就是说,若转换前两数相等,转换后仍必须相等。 有四进制 十进制:有10个基数:0 ~~ 9 ,逢十进一 二进制:有2 个基数:0 ~~ 1 ,逢二进一 八进制:有8个基数:0 ~~ 7 ,逢八进一 十六进制:有16个基数:0 ~~ 9,A,B,C,D,E,F (A=10,B=11,C=12,D=13,E=14,F=15) ,逢十六进一 1、数的进位记数法 N=a n-1*p n-1+a n-2*p n-2+…+a2*p2+a1*p1+a0*p0 2、十进制数与P进制数之间的转换 ①十进制转换成二进制:十进制整数转换成二进制整数通常采用除2取余法,小数部分乘2取整法。例如,将(30)10转换成二进制数。 将(30)10转换成二进制数 2| 30 ….0 ----最右位 2 15 ….1 2 7 ….1 2 3 ….1 1 ….1 ----最左位 ∴ (30)10=(11110)2 将(30)10转换成八、十六进制数 8| 30 ……6 ------最右位 3 ------最左位 ∴ (30)10 =(36)8 16| 30 …14(E)----最右位 1 ----最左位 ∴ (30)10 =(1E)16 3、将P进制数转换为十进制数 把一个二进制转换成十进制采用方法:把这个二进制的最后一位乘上20,倒数第二位乘上21,……,一直到最高位乘上2n,然后将各项乘积相加的结果就它的十进制表达式。 把二进制11110转换为十进制 (11110)2=1*24+1*23+1*22+1*21+0*20= =16+8+4+2+0 =(30)10 把一个八进制转换成十进制采用方法:把这个八进制的最后一位乘上80,倒数第二位乘上81,……,一直到最高位乘上8n,然后将各项乘积相加的结果就它的十进制表达式。 把八进制36转换为十进制 (36)8=3*81+6*80=24+6=(30)10 把一个十六进制转换成十进制采用方法:把这个十六进制的最后一位乘上160,倒数第二位乘上161,……,一直到最高位乘上16n,然后将各项乘积相加的结果就它的十进制表达式。 把十六制1E转换为十进制 (1E)16=1*161+14*160=16+14=(30)10 3、二进制转换成八进制数 (1)二进制数转换成八进制数:对于整数,从低位到高位将二进制数的每三位分为一组,若不够三位时,在高位左面添0,补足三位,然后将每三位二进制数用一位八进制数替换,小数部分从小数点开始,自左向右每三位一组进行转换即可完成。例如: 将二进制数1101001转换成八进制数,则 (001 101 001)2 | | | ( 1 5 1)8 ( 1101001)2=(151)8 (2)八进制数转换成二进制数:只要将每位八进制数用三位二进制数替换,即可完成转换,例如,把八进制数(643.503)8,转换成二进制数,则 (6 4 3 . 5 0 3)8 | | | | | | (110 100 011 . 101 000 011)2 (643.503)8=(110100011.101000011)2 4、二进制与十六进制之间的转换 (1)二进制数转换成十六进制数:由于2的4次方=16,所以依照二进制与八进制的转换方法,将二进制数的每四位用一个十六进制数码来表示,整数部分以小数点为界点从右往左每四位一组转换,小数部分从小数点开始自左向右每四位一组进行转换。 (2)十六进制转换成二进制数 如将十六进制数转换成二进制数,只要将每一位十六进制数用四位相应的二进制数表示,即可完成转换。 例如:将(163.5B)16转换成二进制数,则 ( 1 6 3 . 5 B )16 | | | | | (0001 0110 0011. 0101 1011 )2 (163.5B)16=(101100011.01011011)2
如何换算各种进制
各种进制之间的转换方法: 一、不同的进位制数转化为十进制数:按权展开相加十进制是权是10;二进制是权是2;十六进制是权是16;八进制是权是8;例:110011(二进制数)=1*2^5+1*2^4+0*2^3+0*2^2+1*2^1+1*2^0=32+16+2+1=511507(八进制数)=1*8^3 + 5*8^2 + 0*8^1 + 7*8^0 = 839 2AF5(十六进制数)=2*16^3 + A*16^2+ F*16^1 + 5*16^0 = 10997 二、十进制数化为不同进制数 整数部分:除权取余;小数部分:乘权取整例:十进制数13转化成二进制数13/2=6 余16/2=3 余03/2=1 余11/2=0 余1结果:1101三、二进制换算八进制 将二进制数从右到左,三位一组,不够补0例:二进制数10110111011换八进制数: 010 110 111 011 结果为:2673 四、二进制转换十六进制 二进制数转换为十六进制数的方法也类似,从右到左,四位一组,不够补0如上题: 0101 1011 1011 结果为:5BB如上题: 0101 1011 1011 结果为:5BB
进制的换算
二字节-4的八进制为:177774四字节-4的八进制为:37777777774因为二进制转换为八进制,是从低位开始,以每三位二进制转换为一位八进制数的。四字节的-4,共有32位二进制数,这样最高一位八进制数是由两位二进制数11转换而来,所以最高位是3。进制也就是进位制,对于任何一种进制---X进制,就表示某一位置上的数运算时是逢X进一位,十进制是逢十进一,十六进制是逢十六进一,二进制就是逢二进一,以此类推,x进制就是逢x进位。扩展资料:在进行进制转换时有一基本原则:转换后表达的“量”的多少不能发生改变。二进制中的111个苹果和十进制中的7个苹果是一样多的。十进制中的数位排列是这样的…… 万 千 百 十 个 十分 百分 千分……R进制中的数位排列是这样的……R^4 R^3R^2 R^1 R^0 R^-1 R^-2 R^-3……可以看出相邻的数位间相差进制的一次方。参考资料来源:百度百科-进制转换
进制转换方法的公式
进制转换方法的公式如下:一、十进制转为二进制89(10)=1*26+0*25+1*24+1*23+0*22+0*21+1*20=1011001转化为八进制98=1*82+4*81+2*80=142(8)转为十六进制99=5*161+9*160=59二、二进制转化为十进制11010(2)=1*24+1*23+0*22+1*21+0*20=26转为八进制100111=47(8)-----分步计算 100=1*22+0*21+0*20=4 与 111=1*22+1*21+1*20=7转为十六进制10011100=9c(16)-----分步计算 1001=1*2+0*2+1*2=9 与 1100=1*23+1*22+0*21+0*20=12=c三、八进制转化为十进制67(8)=6*81+7*80=55转为二进制67(8)=110111(2) 分步计算 6=1*22+1*21+0*20=110 与 7=1*22+1*21+1*20=111转为十六进制四、十六进制转为二进制9e=10011110(2) 分步计算 9=1*23+0*22+0*21+1*20=1001(2) 与 e=14=1*23+1*22+1*21+0*20=1110(2)转为十进制
进制转换方法的公式
进制转换方法的公式:二进制数,十六进制数可以采用按权展开法转化为十进制数,十进制转化为R进制要分为两部分,其中整数部分要除R取余,直到商为0,小数部分要乘R取余直到得到整数。
进制转换是人们利用符号来计数的方法,进制转换由一组数码符号和两个基本因素“基数”与“位权”构成。基数是指进位计数制中所采用的数码(数制中用来表示“量”的符号)的个数。位权是指进位制中每一固定位置对应的单位值。
10进制转8进制方法
1、先来看八进制如何转换成十进制。其方法与二进制转换成十进制差不多:按权相加法,即将八进制每位上的数乘以位权(如8,64,512….),然后将得出来的数再加在一起。如将72.45转换为十进制。如图1所示:2、 整数部分,除8取余法,每次将整数部分除以8,余数为该位权上的数,商继续除以8,余数又为上一个位权上的数,然后以此类推一直下去,直到商为零,最后从最后一个余数向前排列就可以了,如图2所示:3、再看小数部分,与转二进制相同,这里是乘八取整法,也就是说小数部分乘以8,然后取整数部分,再让剩下的小数部分再乘以8,再取整数部分,……以此类推,一直乘到小数部分为零为止。例如0.703125,如图3所示:4、小数部分乘以8,如图4所示,根据位数要求进行“3舍4入”。5、这个是直接的方法,还有一个间接的方法捏?就是先把十进制转换为二进制,然后再由二进制转换为8进制,例如将十进制478.0245转为八进制。先转为二进制为:(478.125)10=(111011110.001)2 二进制再转为八进制为:(111011110.001)2=(736.1)8咱们用图来解释一下,如图5所示为转换为二进制的介绍:6、然后再将二进制转换为八进制,还是再温习一下二进制数与八进制数的对照表吧,如图6所示:7、对照图表将二进制转换为八进制后的结果如图7所示:
不同进制之间如何转换?
各种进制之间的转换方法:
一、不同的进位制数转化为十进制数:按权展开相加
十进制是权是10;二进制是权是2;十六进制是权是16;八进制是权是8;
例:
110011(二进制数)=1*2^5+1*2^4+0*2^3+0*2^2+1*2^1+1*2^0=32+16+2+1=51
1507(八进制数)=1*8^3 + 5*8^2 + 0*8^1 + 7*8^0 = 839
2AF5(十六进制数)=2*16^3 + A*16^2+ F*16^1 + 5*16^0 = 10997
二、十进制数化为不同进制数
整数部分:除权取余;小数部分:乘权取整
例:十进制数13转化成二进制数
13/2=6 余1
6/2=3 余0
3/2=1 余1
1/2=0 余1
结果:1101
三、二进制换算八进制
将二进制数从右到左,三位一组,不够补0
例:二进制数10110111011换八进制数:
010 110 111 011
结果为:2673
四、二进制转换十六进制
二进制数转换为十六进制数的方法也类似,从右到左,四位一组,不够补0
如上题:
0101 1011 1011
结果为:5BB