关于遗传算法选择概率的和的计算过程——数学达人请进!
首先y=x*x在[0,31]这个函数的极值是取31的时候,用遗传算法来解答这样的问题是有点多余的。遗传算法的主要步骤是4步,初始化种群,选择,交叉,变异。这里说的淘汰函数,很可能就是在选择选择算子,这个算子是根据最适合最优先的算法来实现。举个简单的例子,你要用数字进行遗传算法,肯定得把他转化为2进制的染色体,【0-31】就是从00000-11111,每条染色体5个基因。对于选择运算来说,每次要从种群选择最优的几个,第一次完全是随机的。假如随机选4个染色体,选的4条染色体是1,2,3,4。很明显他们的值是1,4,9,16,总和是30,那么选择4的概率就是30分之16,这样就可以尽可能的选择大的数值。这里的淘汰域3,可能是每次淘汰3条染色体,或者每次只选择3条最优的染色体,视其选择的条数而定。我看在程序里没有用到这个东西。遗传算法以及进化算法不限定于特殊的程序,每个人有不同的理解,不必拘泥于概念。
求一些关于遗传算法提高的资料
这么简单还用问目前,高校对于硕博士论文,需要通过抄袭检测系统的检测才能算过关。对本科生来说,大部分学校也采取抽查的方式对本科论文进行检测。抄袭过多,一经查出超过30%,后果严重。轻者延期毕业,重者取消学位。辛辛苦苦读个大学,学位报销了多不爽。但是,软件毕竟是人工设置的一种机制,里面内嵌了检测算法,我们只要摸清其中的机理,通过简单的修改,就能成功通过检测。本文是在网络收集的资料。整理了最重要的部分,供大家参考。论文抄袭检测算法:1.论文的段落与格式论文检测基本都是整篇文章上传,上传后,论文检测软件首先进行部分划分,上交的最终稿件格式对抄袭率有很大影响。不同段落的划分可能造成几十个字的小段落检测不出来。因此,我们可以通过划分多的小段落来降低抄袭率。2.数据库论文检测,多半是针对已发表的毕业论文,期刊文章,还有会议论文进行匹配的,有的数据库也包含了网络的一些文章。这里给大家透露下,很多书籍是没有包含在检测数据库中的。之前朋友从一本研究性的著作中摘抄了大量文字,也没被查出来。就能看出,这个方法还是有效果的。3.章节变换很多同学改变了章节的顺序,或者从不同的文章中抽取不同的章节拼接而成的文章,对抄袭检测的结果影响几乎为零。所以论文抄袭检测大师建议大家不要以为抄袭了几篇文章,或者几十篇文章就能过关。4.标注参考文献参考别人的文章和抄袭别人的文章在检测软件中是如何界定的。其实很简单,我们的论文中加了参考文献的引用符号,但是在抄袭检测软件中。都是统一看待,软件的阀值一般设定为1%,例如一篇文章有5000字,文章的1%就是50字,如果抄袭了多于50,即使加了参考文献,也会被判定为抄袭。5.字数匹配论文抄袭检测系统相对比较严格,只要多于20单位的字数匹配一致,就被认定为抄袭,但是前提是满足第4点,参考文献的标注。论文抄袭修改方法:首先是词语变化。文章中的专业词汇可以保留,尽量变换同义词;其次,改变文中的描述方式,例如倒装句、被动句、主动句;打乱段落的顺序,抄袭原文时分割段落,并重组。通过上述方法,能有效降低抄袭率。下面举几个例子,大家可以参考下:例句A:本文以设备利用率最大化为目标函数,采用整数编码与实数编码相结合的遗传算法,研究了HFS的构建问题。本文提出的染色体编码方法及相应的遗传操作方法可实现研究对象的全局随机寻优。通过对car系列标准算例的研究,显示了本文提出方法具有较高的计算重复性和计算效率。修改A:本文研究了HFS问题的构建,通过遗传算法并结合整数与实数编码,目标函数为最大化设备利用率来求解。本文的染色体编码方法与对应的遗传算法操作可有效提高算法的全局搜索能力。通过对一些列基准算例的研究,验证了本文算法的有效性,并具有较高的计算重复性和较高的运算效率。例句B:由于房地产商品的地域性强,房地产开发企业在进行不同区域投资时,通常需要建立项目公司,此时就会面临建立分公司还是子公司的选择。子公司是一个独立的法人,而分公司则不是独立法人,它们在税收利益方面存在差异。子公司是独立法人,在设立区域被视为纳税人,通常要承担与该区域其它公司一样的全面纳税义务;分公司不是独立的法人实体,在设立分公司的所在区域不被视为纳税人,只承担有限的纳税义务,分公司发生的利润与亏损要与总公司合并计算。修改B:房地产开发企业在不同区域进行投资时,由于此类商品的地域性强,因此需要建立项目公司。此时,企业需要选择建立分公司还是子公司。主要的区别是子公司具有独立的法人,分公司则不是独立法人。其次,在税收利益方面,由于分公司不是独立的法人实体,在设立分公司的所在区域不被视为纳税人,只承担纳税义务,总公司需要合并计算分公司的利润与亏损;而子公司是独立法人,在所在区域被视为法人实体,需要承担与区域其他公司一样的全面纳税义务。修改抄袭的方法不外乎这些,这里更建议同学们,先熟悉你所看的参考论文,关闭文档,用自己的话写出来,这样就不会受参考文献的太多影响。有同学这里就提出问题了,学校用的检测系统是知网的学术不端检测系统,不是淘宝几元钱买的万方数据检测。其实,各个检测系统的算法区别并不大,只是数据库有多有少,如果你没有太多,什么系统都不用怕。既然你抄了,得到检测报告的同时,先好好修改自己的文章。抄了之后,改相拟度,可以这样去头去尾留中间,意同词不同。一、查重原理1、知网学位论文检测为整篇上传,格式对检测结果可能会造成影响,需要将最终交稿格式提交检测,将影响降到最小,此影响为几十字的小段可能检测不出。对于3万字符以上文字较多的论文是可以忽略的。对比数据库为:中国学术期刊网络出版总库,中国博士学位论文全文数据库/中国优秀硕士学位论文全文数据库,国重要会议论文全文数据库,中国重要报纸全文数据库,中国专利全文数据库,个人比对库,其他比对库。部分书籍不在知网库,检测不到。2、上传论文后,系统会自动检测该论文的章节信息,如果有自动生成的目录信息,那么系统会将论文按章节分段检测,否则会自动分段检测。3、有部分同学反映说自己在段落中明明引用或者抄袭了其他文献的段落或句子,为什么没有检测出来,这是正常的。中国知网对该套检测系统的灵敏度设置了一个阀值,该阀值为5%,以段落计,低于5%的抄袭或引用是检测不出来的,这种情况常见于大段落中的小句或者小概念。举个例子:假如检测段落1有10000字,那么引用单篇文献500字以下,是不会被检测出来的。实际上这里也告诉同学们一个修改的方法,就是对段落抄袭千万不要选一篇文章来引用,尽可能多的选择多篇文献,一篇截取几句,这样是不会被检测出来的。4、一篇论文的抄袭怎么才会被检测出来?知网论文检测的条件是连续13个字相似或抄袭都会被红字标注,但是必须满足3里面的前提条件:即你所引用或抄袭的A文献文字总和在你的各个检测段落中要达到5%。二、快速通过论文查重的七大方法方法一:外文文献翻译法查阅研究领域外文文献,特别是高水平期刊的文献,比如Science,Nature,WaterRes等,将其中的理论讲解翻译成中文,放在自己的论文中。优点:1、每个人语言习惯不同,翻译成的汉语必然不同。因此即使是同一段文字,不同人翻译了之后,也不会出现抄袭的情况。2、外文文献的阅读,可以提升自身英语水平,拓展专业领域视野。缺点:英文不好特别是专业英文不好的同学实施起来比较费劲。方法二:变化措辞法将别人论文里的文字,或按照意思重写,或变换句式结构,更改主被动语态,或更换关键词,或通过增减。当然如果却属于经典名句,还是按照经典的方法加以引用。优点:1.将文字修改之后,按照知网程序和算法,只要不出现连续13个字重复,以及关键词的重复,就不会被标红。2.对论文的每字每句都了如指掌,烂熟于心,答辩时亦会如鱼得水。缺点:逐字逐句的改,费时费力。方法三:减头去尾,中间换语序将别人论文里的文字,头尾换掉中间留下,留下的部分改成被动句,句式和结构就会发生改变,再自行修改下语病后,即可顺利躲过查重。优点:方便快捷,可以一大段一大段的修改。缺点中文没学好的,会很费劲,要想半天。方法四:转换图片法将别人论文里的文字,截成图片,放在自己的论文里。因为知网查重系统目前只能查文字,而不能查图片和表格,因此可以躲过查重。优点:比改句序更加方便快捷。缺点:用顺手了容易出现整页都是图片的情况,会影响整个论文的字数统计。方法五:插入文档法将某些参考引用来的文字通过word文档的形式插入到论文中。优点:此法比方法四更甚一筹,因为该方法日后还可以在所插入的文档里进行重新编辑,而图片转换法以后就不便于再修改了。缺点:还没发现。方法六:插入空格法将文章中所有的字间插入空格,然后将空格字间距调到最小。因为查重的根据是以词为基础的,空格切断了词语,自然略过了查重系统。优点:从查重系统的原理出发,可靠性高。缺点:工作量极大,课可以考虑通过宏完成,但宏的编制需要研究。方法七:自己原创法自己动手写论文,在写作时,要么不原文复制粘贴;要么正确的加上引用。优点:基本上绝对不会担心查重不通过,哪怕这个查重系统的阈值调的再低。缺点:如果说优缺点的话,就是写完一篇毕业论文,可能会掉更多的脑细胞。呵呵。。。知网系统计算标准详细说明:1.看了一下这个系统的介绍,有个疑问,这套系统对于文字复制鉴别还是不错的,但对于其他方面的内容呢,比如数据,图表,能检出来吗?检不出来的话不还是没什么用吗?学术不端的各种行为中,文字复制是最为普遍和严重的,目前本检测系统对文字复制的检测已经达到相当高的水平,对于图表、公式、数据的抄袭和篡改等行为的检测,目前正在研发当中,且取得了比较大的进展,欢迎各位继续关注本检测系统的进展并多提批评性及建设性意见和建议。2.按照这个系统39%以下的都是显示黄色,那么是否意味着在可容忍的限度内呢最近看到对上海大学某教师的国家社科基金课题被撤消的消息,原因是其发表的两篇论文有抄袭行为,分别占到25%和30%.请明示超过多少算是警戒线?百分比只是描述检测文献中重合文字所占的比例大小程度,并不是指该文献的抄袭严重程度。只能这么说,百分比越大,重合字数越多,存在抄袭的可能性越大。是否属于抄袭及抄袭的严重程度需由专家审查后决定。3.如何防止学位论文学术不端行为检测系统成为个人报复的平台?这也是我们在认真考虑的事情,目前这套检测系统还只是在机构一级用户使用。我们制定了一套严格的管理流程。同时,在技术上,我们也采取了多种手段来最大可能的防止恶意行为,包括一系列严格的身份认证,日志记录等。4.最小检测单位是句子,那么在每句话里改动一两个字就检测不出来了么?我们对句子也有相应的处理,有一个句子相似性的算法。并不是句子完全一样才判断为相同。句子有句子级的相似算法,段落有段落级的相似算法,计算一篇文献,一段话是否与其他文献文字相似,是在此基础上综合得出的。5.如果是从相关书籍上摘下来的原话,但是此话已经被数据库中的相关文献也抄了进去,也就是说前面的文章也从相关书籍上摘了相同的话,但是我的论文中标注的这段话来自相关的书籍,这个算不算学术抄袭?检测系统不下结论,是不是抄袭最后还有人工审查这一关,所以,如果是您描述的这种情况,专家会有相应判断。我们的系统只是提供各种线索和依据,让人能够快速掌握检测文献的信息。6.知网检测系统的权威性?学术不端文献检测系统并不下结论,即检测系统并不对检测文献定性,只是将检测文献中与其他已发表文献中的雷同部分陈列出来,列出客观事实,而这篇检测文献是否属于学术不端,需专家做最后的审查确认。一篇论文的抄袭怎么才会被检测出来?知网论文检测的条件是连续13个字相似或抄袭都会被红字标注,但是必须满足3里面的前提条件:即你所引用或抄袭的A文献文字总和在你的各个检测段落中要达到5%。论文查重修改的规律:1、如果是引用,在引用标号后,不要轻易使用句号,如果写了句号,句号后面的就是剽窃了(尽管自已认为是引用),所以,引用没有结束前,尽量使用分号。有些人将引用的上标放在了句号后面,这是不对的,应该在句号之前。2、可以将文字转换为表格,将表格边框隐藏。3、如果你看的外文的多,由外文自己翻译过来引用的,个人认为,不需要尾注,就可以当做自己的,因为查重的数据库只是字符的匹配,无法做到中文和英文的匹配。4、查重是一个匹配的过程,是以句为单位,如果一句话重复了,就很容易判定重复了,所以:的确是经典的句子,就用上标的尾注的方式,在参考文献中表达出来,或者是用:原文章作者《名字》和引号的方式,将引用的内容框出来。引号内的东西,系统会识别为引用如果是一般的引用,就采用罗嗦法,将原句中省略的主语、谓语、等等添加全,反正哪怕多一个字,就是胜利,也可以采用横刀法,将一些句子的成分,去除,用一些代词替代。或者是用洋鬼子法,将原文中的洋名,是中文的,就直接用英文,是英文的直接用中文,或是哦中文的全姓名,就用中文的名,如果是中文的名,就找齐了,替换成中文的姓名。故意在一些缩写的英文边上,加上(注释)(画蛇添足法),总之,将每句话都可以变化一下,哪怕增加一个字或减少一个字,都是胜利了。特别注意标点符号,变化变化,将英文的复合句,变成两个或多个单句,等等,自己灵活掌握。因为真正写一篇论文,很罕见地都是自己的,几乎不可能,但大量引用别人的东西,说明你的综合能力强,你已经阅读了大量的资料,这就是一个过程,一个学习、总结的过程。所有的一切,千万别在版面上让导师责难,这是最划不来的。导师最讨厌版面不规范的,因为他只负责内容,但又不忍心因为版面问题自己的弟子被轰出来。5、下面这一条我傻妞试过的,决对牛B:将别人的文字和部分你自己的文字,选中,复制(成为块,长方形),另外在桌面建一个空文件,将内容,复制到文件中,存盘,关闭。将这个文件的图标选中,复制,在你的正文中的位置上,直接黏贴,就变成了图片了,不能编辑的。这个操作事实上是将内容的文件作为一个对象插入的,所以是图片。这个操作事实上是将内容的文件作为一个对象插入的。所以是图片。以上那些东西再次总结一下:查重是一个匹配的过程,是以句为单位,如果一句话重复了,就很容易判定重复了,所以:1)如果的确是经典的句子,就用上标的尾注的方式,在参考文献中表达出来。2)如果是一般的引用,就采用罗嗦法,将原句中省略的主语、谓语、等等添加全,反正哪怕多一个字,就是胜利。3)也可以采用横刀法,将一些句子的成分,去除,用一些代词替代。4)或者是用洋鬼子法,将原文中的洋名,是中文的,就直接用英文,是英文的直接用中文,或是中文的全姓名,就用中文的名,如果是中文的名,就找齐了,替换成中文的姓名。5)故意在一些缩写的英文边上,加上(注释)(画蛇添足法),总之,将每句话都可以变化一下,哪怕增加一个字或减少一个字,都是胜利了。6)如果是引用,在引用标号后,不要轻易使用句号,如果写了句号,句号后面的就是剽窃了(尽管自已认为是引用),所以,引用没有结束前,尽量使用分号。有些人将引用的上标放在了句号后面,这是不对的,应该在句号之前。7)可以将文字转换为表格、表格基本是查重不了的,文字变成图形、表格变成图形,一目了然,绝对不会检查出是重复剽窃了。论文查重修改学校的要求:1、论文题目:要求准确、简练、醒目、新颖。 2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录) 3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。 4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。 主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。 5、论文正文: (1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义,并指出论文写作的范围。引言要短小精悍、紧扣主题。 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容: a.提出-论点; b.分析问题-论据和论证; c.解决问题-论证与步骤; d.结论。 6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。 中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证。 (2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息
随机地下水管理模型的Taylor展开解法
对于随机地下水管理的期望值模型而言,求解的方法比较简单,只需要将有关随机参数的均值代入有限元模拟模型,求得响应系数的期望值(均值)。然后利用修正单纯形或其他方法直接求解管理模型,便可获得在均值参数条件下的优化解。而对于机会约束管理模型来说,由式(5.45)可见,管理模型的约束条件中,由于响应系数方差项的存在,使得约束方程具有非线性性。所以直接利用线性规划模型的求解技术是不可行的。由式地下水系统随机模拟与管理可得,一旦求得了方差响应系数 r(i,j,k),则是 Q 的函数。因此,不妨令:地下水系统随机模拟与管理对式(6.1)在给定的流量Q0(i,n-k+1)处对f(Q)进行一阶Taylor展开得:地下水系统随机模拟与管理因为:地下水系统随机模拟与管理故有地下水系统随机模拟与管理又因:地下水系统随机模拟与管理所以地下水系统随机模拟与管理将式(6.2)代入式(5.45)可得线性约束条件:地下水系统随机模拟与管理为简明起见,令:地下水系统随机模拟与管理并将(6.3)式和(6.4)式代入(5.45)式得新的机会约束地下水疏干管理模型:地下水系统随机模拟与管理比较式(5.43)和式(6.5),不难看出,转化后的机会约束随机地下水管理模型与确定性地下水管理模型具有完全相同的表达形式。所不同的是A(i,j,k)和β(i,j,k)的内在含义。模型(6.5)式很容易用常见的修正单纯形法进行求解。关于修正单纯形法的具体计算方法见参考文献[52]。
模型应用二
为了便于计算和分析,书中采用了如图7.9所示的均质、各向同性承压二维地下水流作为计算的假设水文地质模型。模拟区长110 m,宽110 m,形状为正方形。含水层水平,如图7.10所示,底板标高为0 m。顶板标高为30 m。含水层左右边界为隔水边界,上下边界为定水头边界,边界水位标高均值为100 m,初始水位标高均值为100 m。根据工程要求,需要对该含水层的中心位置节点1、2、3、4、5、6、7、8、9所围成的正方形区域进行疏水降压,且水位降低值要≥10 m。优化设计的目标是如何设计疏干孔和配置疏干水量才能在满足疏干条件下而使最终的稳定疏干总水量最小。该问题用最优化管理模型可表示为:地下水系统随机模拟与管理式中:[A]——响应系数矩阵;[Q]——水量决策列向量;[S]——水位疏降约束要求列向量;对该地下水管理模型采用分布参数地下水管理模型,并利用有限单元法计算响应系数。计算剖分网格如图7.9所示。剖分总节点为157个,总单元数为268个。根据上述剖分情况及管理问题的要求,设水位控制点为节点1,2,3,4,5,6,7,8,9。即1~9号节点水位疏降值≥10 m。并假设节点10,11,12,13,14,15,16,17,18,为可供选择的疏干井位。这样地下水管理模型(7.2)可具体地表示为:地下水系统随机模拟与管理图7.9 计算模型及剖分图图7.10 计算模型A—A′剖面图7.2.1 假设模型的随机性计算讨论为了讨论不同水文地质参数,不同的约束条件置信度水平要求对管理结果的影响,本实例就假设问题的机会约束规划模型分别利用泰勒展开解法和人工遗传算法进行了计算分析。7.2.1.1 Taylor展开求解方法(1)假设模型中渗透系数为服从均匀分布的随机变量,且渗透系数的均值为5 m/d,其他水文地质参数为确定性变量,即μ=5×10-4,H0(x,y,0)=100 m,Hb(x,y,t)|Γ1=100 m,渗透系数的方差 var(K)分别为1.333,0.750,0.333 和0.083。在每种方差条件下,又分别考虑约束条件的置信水平为α=1.0,α=0.95,α=0.9,α=0.85和α=0.8 5种情况。通过20种方案的计算讨论,可得渗透系数 K 的方差 var(K)、约束条件的置信度水平α、总疏水量及其分配之间的相互关系如表 7.3 所示。表 7.3 的计算结果如图 7.11 所示。由图7.11明显可见:在相同的约束条件置信度水平α下,随着var(K)的增加,其总疏水量呈增加趋势;当var(K)一定时,随置信度水平α的增加,总疏水量亦呈增大趋势。表7.3 Taylor展开法对渗透系数(K)的随机性计算结果表图7.11 渗透系数不确定信水平、模型可靠性及总疏水量关系图(2)假设模型中的弹性给水度为服从均匀分布的随机变量,且其均值为5×10-4,其他水文地质参数均为确定性变量,即 Kx=Ky=5 m/d,H0(x,y,0)=100 m,Hb(x,y,t)100 m。分别就弹性给水度的方差var(μ)为0.533×10-7,0.3×10-7,0.133×10-7,0.33×10-8,约束条件的置信度水平分别为1.0,0.95,0.90,0.85,0.80讨论计算了弹性给水度随机性与管理结果之间的关系。表7.4为 var(μ)、α、总疏水量及配置之间的关系。图7.12为表7.4中计算结果的图形表示。由图 7.12 可见:在相同的约束条件置信度水平α下,随着弹性给水度方差var(μ)增加,总疏水量呈增大趋势,但其增加的幅度非常小。在同样的 var(μ)条件下,随着约束条件置信度水平α的增加,总疏水量亦呈增加趋势,且这种增加的幅度亦非常小。地下水系统随机模拟与管理图7.12 给水度不确定信水平、模型可靠性及总疏水量关系图(3)假设一类边界条件上的水位为服从均匀分布的随机变量,且其均值为100 m,其他水文地质参数均为确定量,即 Kx =Ky =5 m/d,μ=5×10-4,H0(x,y,0)=100m。分别就一类边界水位的方差 var(Hb)=0.0833,0.0533,0.030,0.0133,约束条件的置信度水平要求为1.0,0.95,0.90,0.85,0.80进行了随机管理模型的计算讨论,表7.5为各种组合条件下的计算结果。图7.13为其计算结果的图形表示。由图7.13可见,在相同的置信度α下,随着方差 var(Hb)的增加,总疏水量呈明显增加趋势。当 var(Hb)一定时,随着约束条件置信度水平的提高,其总疏水量亦呈明显的增加趋势。且在方差值不大的情况下,总疏水量总体的变化幅度较大。表7.4 Taylor展开法对弹性给水度(μ)的随机性计算结果表图7.13 一类边界水位不确定信水平、模型可靠性及总疏水量关系图表7.5 Taylor展开法对一类边界水位(Hb)的随机性计算结果表(4)假设初始水位 H0(x,y,0)为服从均匀分布的随机变量,且其均值为100 m,而其他水文地质参数均为确定性变量,即 Kx=Ky=5 m/d,μ=5×10-4文中分别就初始水头的方差var(H0)为8.33,5.33,3.00和1.333,约束条件的置信度水平为1.0,0.95,0.90,0.85,0.8进行了随机管理模型计算讨论,表7.6为多种组合条件下的计算结果。图7.14为计算结果的图形表示。由表7.6和图7.14可见初始水头的方差并不影响总疏干水量。因此,初始水位的高低并不影响最后稳定的疏干水量。7.2.1.2 人工遗传算法对于同样的假设模型和问题,与Taylor展开法同样的计算假设条件,采用人工遗传算法进行了管理模型的优化求解。为了减少遗传算法的工作量,初始解群体由1000个随机解个体中依其适应度函数值的优劣性选出;并设基本进化运算参数为:表7.6 Taylor展开法对初始水头(H0)的随机性计算结果表图7.14 初始水位不确定信水平、模型可靠性及总疏水量关系图群体规模 m=30交叉计算概率 Pc=0.7变异计算概率 Pm=0.1进化代数 n=60其计算结果见表7.7至表7.10及图7.15至图7.18。表7.7 人工遗传算法对渗透系数(K)的随机性计算结果图7.15 渗透系数不确定信水平、模型可靠性及总疏水量关系图表7.8 人工遗传算法对弹性给水度(μ)的随机性计算结果图7.16 给水度不确定信水平、模型可靠性及总疏水量关系图表7.9 人工遗传算法对一类边界条件(Hb)的随机性计算结果图7.17 一类边界水位不确定信水平、模型可靠性及总疏水量关系图表7.10 人工遗传算法对初始水头(H0)的随机性计算结果表图7.18 初始水位不确定信水平、模型可靠性及总疏水量关系图7.2.1.3 随机变量联合分布的Monte-Carlo 计算方法前面分别利用Taylor展开方法和人工遗传方法就单个随机水文地质参数的情况进行了计算讨论。但我们知道我们所遇到的实际问题往往是多个随机变量并存,且不同随机变量的方差也不尽相同,其随机变量的随机分布概型也各不相同。本节分别就含水层的渗透系数(K),弹性给水度(μ),初始水头分布(H0)及一类边界水头值(Hb)为服从均匀分布的随机变量和正态分布的随机变量进行了联合分布计算讨论,并假设不同随机变量之间相互独立。随机管理模型的响应系数均值和方差利用Monte-carlo随机有限元法求解。经过计算分析,选择的随机参数样本数为300。(1)各个参数服从均匀分布的联合分布计算假设各随机水文地质参数服从均匀分布,且不同水文地质参数之间相互独立。各随机参数的均值分别为:地下水系统随机模拟与管理在上述均值条件下,分别就各随机参数的不同方差和同一方差条件下的不同约束条件置信度水平进行了计算。当计算方差为:地下水系统随机模拟与管理计算结果见表7.11和图7.19。表7.11 独立均匀分布参数联合分布计算结果表当计算方差为:地下水系统随机模拟与管理图7.19 总疏水量与约束置信度水平相关曲线计算结果见表7.12和图7.20。表7.12 独立均匀分布参数联合分布计算结果图7.20 总疏水量与约束置信度水平相关曲线当计算方差为:地下水系统随机模拟与管理计算结果见表7.13和图7.21。表7.13 独立均匀分布参数联合分布计算结果图7.21 总疏水量与约束置信度水平相关曲线当计算方差为:地下水系统随机模拟与管理计算结果见表7.14和图7.22。表7.14 独立均匀分布参数联合分布计算结果(2)各个随机变量服从N(μ,σ2)正态分布的联合分布计算为了研究随机变量的不同分布形式对随机地下水管理模型结果的影响,在计算了随机变量服从均匀联合分布条件后,书中又假设每个随机变量为服从N(μ,σ2)正态分布情况,并假设其均值分别为:图7.22 总疏水量与约束置信度水平相关曲线地下水系统随机模拟与管理并就不同参数方差σ2和不同约束条件置信度水平α进行了计算。表7.15至表7.18为不同方差和α组合条件下的计算成果表。表7.15计算的随机参数分布为:地下水系统随机模拟与管理计算结果如下:表7.15 独立正态联合分布计算结果表表7.16计算的随机参数分布为:地下水系统随机模拟与管理计算结果如下:表7.16 独立正态联合分布计算结果表表7.17计算的随机参数分布为:地下水系统随机模拟与管理计算结果如下:表7.17 独立正态联合分布计算结果表表7.18计算的随机参数分布为:地下水系统随机模拟与管理计算结果如下:表7.18 独立正态联合分布计算结果表由以上表中计算结果可知,随机变量为正态分布时,优化模型的计算结果与随机变量为均匀分布时所呈现的规律完全相似。因此,影响管理结果的主要因素是随机变量的种类和方差的大小,而与其具体分布形式的关系并不很大。7.2.2 计算结果的讨论与分析由前述各节计算结果可见由于水文地质参数的随机性,使得地下水管理模型的管理结果变化很大,且不同的水文地质参数,不同的参数不确定性水平(方差),不同的管理结果可靠性要求对管理结果的影响是不同的。总体来看,参数的随机性与管理结果之间有如下关系。(1)随着随机参数不确定性水平的增加,在相同疏干约束条件下,总疏干水量呈增大规律。(2)渗透系数K和一类边界条件Hb的随机性对管理结果的影响最明显。弹性给水度的随机性对管理结果的影响很小。(3)含水层的初始水位只影响疏干时间,而对最终的稳定疏干水量没有影响。(4)如果随机参数的方差越大,要达到同样的疏干水平和疏干置信度所需的疏干水量增大。(5)对于同样的参数不确定性水平(即同样的var(·)),则随着对疏干可靠程度(约束条件成立的置信度水平α)要求的增加,疏干水量明显增加。而且这种增加并非与α成线性关系。尤其要使约束条件成立的概率为100%时,其总疏干水量增加幅度很大。从下面的分析中可见,我们可以得知这些变化规律完全服从地下水运动的基本规律。由达西公式得经过断面ω的流量公式为:地下水系统随机模拟与管理式中:Q——抽水量;K——含水层渗透系数;Hb——边界水位标高;Hw——井中水位标高;d——疏水井到边界距离;ω——过水断面积。由该式可见,当d、ω和Hw(由疏干约束条件所定)固定时,对Q影响最大的变量就是Hb和K,即边界水位和渗透系数。这与本文计算结果所反映的规律完全一致。由地下水随机管理模型的约束条件表达式地下水系统随机模拟与管理可知,如果水文地质参数的方差增加,必然导致管理模型中响应系数方差 r2(i,j,k)的增加,要使约束条件中不等式成立,必然要求决策变量 Q 的增加(因Φ-1[α(j,k)]<0)。这也说明,随着随机参数不确定性水平(方差)的增加,要保证同样的疏干深度,必然引起总疏水量的增加。由上式同样可知,在其他参数一定的条件下,随着约束条件满足的置信度水平α的提高,则小概率事件发生的概率1-α变小,从而使Φ-1(α)的减小,要使不等式成立,定会产生疏水量 Q 的增加。这里要注意Φ-1(α)与α之间的关系。由此可见,分析结论与计算结果所反映的规律完全一致。对随机地下水管理模型及其计算结果的分析表明:当存在随机水文地质参数时,管理模型的决策结果与参数的不确定性水平(方差大小)及对管理结果的可靠性要求水平(α)之间存在着密切关系。这对制定风险决策具有重要意义。为了进一步分析假设模型计算结果,我们将不同条件下的决策结果代入地下水疏干模型进行了不同随机参数的疏干效果检验。计算结果见表7.19至表7.22。表7.19 考虑渗透系数服从[3,7]均匀分布,var=1.333,E(K)=5 m/d约束条件置信水平α=0.9条件下疏干计算结果表7.20 考虑第一类边界条件为服从[99.5,100.5]均匀分布,var=0.0833 E(Hb)=100,约束条件置信水平α=0.9条件下疏干计算结果表7.21 考虑给水度服从[1×10-4,1×10-5]均匀分布,var=0.533×10-7,-E(μ)=5×10-4,约束条件置信水平α=0.9条件下的疏干计算结果表7.22 考虑初始水位为服从[95,105]均匀分布,E(H0)=100,var(H0)8.33,约束条件置信水平α=0.9条件下疏干计算结果由疏干模拟计算结果可见:疏干结果较好地反映了客观情况,在约束条件置信度水平要求为0.9时,当随机参数出现极为不利于疏干的小概率事件时,实际疏干降深一般都不能满足疏干要求。当随机参数出现在其均值附近时,实际疏干降深基本能够满足疏干要求。当随机参数出现最有利于疏干的小概率事件时,实际疏干降深都大于疏干要求。
遗传算法的主要步骤
为了使用遗传算法来解决优化问题,准备工作分为以下四步[56,57,61]。7.4.1 确定问题的潜在解的遗传表示方案在基本的遗传算法中,表示方案是把问题的搜索空间中每个可能的点表示为确定长度的特征串(通常是二进制串)。表示方案的确定需要选择串长l和字母表规模k。在染色体串和问题的搜索空间中的点之间选择映射有时容易实现,有时又非常困难。选择一个便于遗传算法求解问题的表示方案经常需要对问题有深入的了解。7.4.2 确定适应值的度量适应值度量为群体中每个可能的确定长度的特征串指定一个适应值,它经常是问题本身所具有的。适应值度量必须有能力计算搜索空间中每个确定长度的特征串的适应值。7.4.3 确定控制该算法的参数和变量控制遗传算法的主要参数有群体规模Pop-Size、算法执行的最大代数N-Gen、交叉概率Pc、变异概率Pm和选择策略R等参数。(1)群体规模Pop-Size。群体规模影响到遗传算法的最终性能和效率。当规模太小时,由于群体对大部分超平面只给出了不充分的样本量,所以得到的结果一般不佳。大的群体更有希望包含出自大量超平面的代表,从而可以阻止过早收敛到局部最优解;然而群体越大,每一代需要的计算量也就越多,这有可能导致一个无法接受的慢收敛率。(2)交叉率Pc。交叉率控制交叉算子应用的频率,在每代新的群体中,有Pc·Pop-Size个串实行交叉。交叉率越高,群体中串的更新就越快。如果交叉率过高,相对选择能够产生的改进而言,高性能的串被破坏得更快。如果交叉率过低,搜索会由于太小的探查率而可能停滞不前。(3)变异率Pm。变异是增加群体多样性的搜索算子,每次选择之后,新的群体中的每个串的每一位以相等的变异率进行随机改变。对于M进制串,就是相应的位从1变为0或0变为1。从而每代大约发生Pm·Pop-Size·L次变异,其中L为串长。一个低水平的变异率足以防止整个群体中任一给定位保持永远收敛到单一的值。高水平的变异率产生的实质是随机搜索。比起选择和交叉,变异在遗传算法中是次要的,它在恢复群体中失去的多样性方面具有潜在的作用。例如,在遗传算法执行的开始阶段,串中一个特定位上的值1可能与好的性能紧密联系,也就是说从搜索空间中某些初始随机点开始,在那个位上的值1可能一致地产生适应性度量好的值。因为越好的适应值与串中那个位上的值1相联系,复制作用就越会使群体的遗传多样性损失。当达到一定程度时,值0会从整个群体中的那个位上消失,然而全局最优解可能在串中那个位上是0。一旦搜索范围缩小到实际包含全局最优解的那部分搜索空间,在那个位上的值0就可能正好是达到全局最优解所需的。这仅仅是一种说明搜索空间是非线性的方式,这种情形不是假定的,因为实际上所有我们感兴趣的问题都是非线性的。变异作用提供了一个恢复遗传多样性的损失的方法。(4)选择策略R。有两种选择策略。一是利用纯选择,即当前群体中每个点复制的次数比与点的性能值成比例。二是利用最优选择,即首先执行纯选择,且具有最好性能的点总是保留到下一代。在缺少最优选择的情况下,由于采样误差、交叉和变异,最好性能的点可能会丢失。通过指定各个参数Pop-Size、Pc、Pm和R的值,可以表示一个特定的遗传算法。7.4.4 确定指定结果的方法和停止运行的准则当遗传的代数达到最大允许代数时,就可以停止算法的执行,并指定执行中得到的最好结果作为算法的结果。基本的遗传算法1)随机产生一个由固定长度字符串组成的初始群体。2)对于字符串群体,迭代地执行下述步骤,直到选择标准被满足为止。①计算群体中的每个个体字符串的适应值;②实施下列三种操作(至少前两种)来产生新的群体,操作对象的选取基于与适应度成比例的概率。选择:把现有的个体串按适应值复制到新的群体中。交叉:通过遗传重组随机选择两个现有的子串进行遗传重组,产生两个新的串。变异:将现有串中某一位的字符随机变异产生一个新串。3)把在后代中出现的最好适应值的个体串指定为遗传算法运行的结果。这一结果可以是问题的解(或近似解)。基本的遗传算法流程图如图7-1所示。
蚂蚁算法的思想进化公式及遗传算法的算法流程图
抄的
目前蚁群算法主要用在组合优化方面,基本蚁群算法的思路是这样的:
1. 在初始状态下,一群蚂蚁外出,此时没有信息素,那么各自会随机的选择一条路径。
2. 在下一个状态,每只蚂蚁到达了不同的点,从初始点到这些点之间留下了信息素,蚂蚁继续走,已经到达目标的蚂蚁开始返回,与此同时,下一批蚂蚁出动,它们都会按照各条路径上信息素的多少选择路线(selection),更倾向于选择信息素多的路径走(当然也有随机性)。
3. 又到了再下一个状态,刚刚没有蚂蚁经过的路线上的信息素不同程度的挥发掉了(evaporation),而刚刚经过了蚂蚁的路线信息素增强(reinforcement)。然后又出动一批蚂蚁,重复第2个步骤。
每个状态到下一个状态的变化称为一次迭代,在迭代多次过后,就会有某一条路径上的信息素明显多于其它路径,这通常就是一条最优路径。
关键的部分在于步骤2和3:
步骤2中,每只蚂蚁都要作出选择,怎样选择呢?
selection过程用一个简单的函数实现:
蚂蚁选择某条路线的概率=该路线上的信息素÷所有可选择路线的信息素之和
假设蚂蚁在i点,p(i,j)表示下一次到达j点的概率,而τ(i,j)表示ij两点间的信息素,则:
p(i,j)=τ(i,j)/∑τ(i)
(如果所有可选路线的信息素之和∑τ(i)=0,即前面还没有蚂蚁来过,概率就是一个[0,1]上的随机值,即随机选择一条路线)
步骤3中,挥发和增强是算法的关键所在(也就是如何数学定义信息素的)
evaporation过程和reinforcement过程定义了一个挥发因子,是迭代次数k的一个函数
ρ(k)=1-lnk/ln(k+1)
最初设定每条路径的信息素τ(i,j,0)为相同的值
然后,第k+1次迭代时,信息素的多少
对于没有蚂蚁经过的路线:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k),显然信息素减少了
有蚂蚁经过的路线:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k)+ρ(k)/|W|,W为所有点的集合
为什么各个函数要如此定义,这个问题很难解释清楚,这也是算法的精妙所在。如此定义信息素的挥发和增强,以及路径选择,根据马尔可夫过程(随机过程之一)能够推导出,在迭代了足够多次以后,算法能够收敛到最佳路径。
遗传的定义是什么?
我有这样的感觉,随着年龄的增长,我觉得我的缺点和父母的简直是一模一样,父母的优点我却没有遗传。首先,我父亲经常头痛,我年轻的时候不觉得,现在发现自己三天两头就头痛,到医院多次检查后发现,是因为我的血压差太小,喊父亲去做检查,最后结果也是这样,可见遗传因素的强大。另外就是父亲的肝脏有问题,我经过检查以后也发现有肝囊肿,我们家的人都不能饮酒,我父亲和我完全一样,只要饮酒就脸红,酒量出奇的小。第二,我感觉自己遗传了母亲节俭的性格,那个年代可以说是没有钱花,父母亲都非常的节约,到我这个年代已经不缺钱了,但我就是舍不得花,花点钱都要精打细算,总觉得浪费是一种罪过,这一点和我母亲特别相像。第三,我父亲的性格比较胆小,口才不好,这个方面我也是遗传了十足十。我从小就胆小怕事,口才非常不好,遇到陌生人讲话都会脸红,上台演讲更是非常害怕,各种担心。第四,我父亲的牙齿不好,60来岁的时候就掉了好多颗,现在40多岁,牙齿已经开始松动,估计要不了几年就赶上我父亲了,连这个都可以遗传。总而言之,随着年龄的增长,我觉得我的缺点和父母亲的简直是一模一样,并且只继承了他们的缺点,他们的优点却很少在我身上得到体现,真的是好奇怪哦。
matlab的遗传算法程序
MaxGenerations,是迭代次数,是用循环语句实现的,如果求解空间不大,改小点就好,population 是每次迭代的并行运算数量。我个人在求解中发现,该值对结果影响较大,一般不要改变。crossoverfraction,变异系数,与运算复杂度无关。 如果程序运行时间很长,检查一下是不是你把遗传算法又放入另一层循环了,一般这样运算时间就会呈现指数级增长。如果这样,就修改算法。
遗传算法具体应用
1、函数优化函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。2、组合优化随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。3、车间调度车间调度问题是一个典型的NP-Hard问题,遗传算法作为一种经典的智能算法广泛用于车间调度中,很多学者都致力于用遗传算法解决车间调度问题,现今也取得了十分丰硕的成果。从最初的传统车间调度(JSP)问题到柔性作业车间调度问题(FJSP),遗传算法都有优异的表现,在很多算例中都得到了最优或近优解。扩展资料:遗传算法的缺点1、编码不规范及编码存在表示的不准确性。2、单一的遗传算法编码不能全面地将优化问题的约束表示出来。考虑约束的一个方法就是对不可行解采用阈值,这样,计算的时间必然增加。3、遗传算法通常的效率比其他传统的优化方法低。4、遗传算法容易过早收敛。5、遗传算法对算法的精度、可行度、计算复杂性等方面,还没有有效的定量分析方法。参考资料来源:百度百科-遗传算法