ATmega16单片机与51单片机的主要区别在哪里
多了AD接口,多了PWM和其他一些资源,最主要的是运行速度快。
单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域的广泛应用。从上世纪80年代,由当时的4位、8位单片机,发展到现在的32位300M的高速单片机。
请问:AVR atmega16和atmega128的区别是什么呢?
AVR atmega16和atmega128的区别是配置不同,
ATmega128是ATMEL公司的 8位系列单片机的最高配置的一款单片机,稳定性极高,应用极其广泛。
ATmega128TQFP封装现主要有这些型号:ATmega128-16AU、ATmega128-16AI。
下面对ATmega128的型号标识进行解析:
①、型号紧跟的字母,表示电压工作范围。带“L”:2.7-5.5V;若缺省,不带“L”:4.5-5.5V。 例:ATmega128-16AU,不带“L”表示工作电压为4.5-5.5V。
②、后缀的数字部分,表示支持的最高系统时钟。 例:ATmega128-16AU,“16”表示可支持最高为16MHZ的系统时钟。
③、后缀第一(第二)个字母,表示封装。“P”:DIP封装,“A”:TQFP封装,“M”:MLF封装。 例:ATmega128-16AU,“A”表示TQFP封装。
④、后缀最后一个字母,表示应用级别。“C”:商业级,“I”:工业级(有铅)、“U”工业级(无铅)。 例:ATmega128-16AU,“U”表示无铅工业级。ATmega128-16AI,“I”表示有铅工业级。
ATmega16单片机的产品特性
u 高性能、低功耗的8位AVR微处理器l 先进的RISC 结构l 131条指令l 大多数指令执行时间为单个时钟周期l 32个8位通用工作寄存器l 全静态工作l 工作于16MHz时性能高达16MIPSl 只需两个时钟周期的硬件乘法器l 非易失性程序和数据存储器l 16K 字节的系统内可编程Flash,擦写寿命: 10,000次l 具有独立锁定位的可选Boot代码区,通过片上Boot程序实现系统内编程,真正的同时读写操作l 512 字节的EEPROM,擦写寿命: 100,000次l 1K字节的片内SRAMl 可以对锁定位进行编程以实现用户程序的加密l JTAG 接口( 与IEEE 1149.1 标准兼容)l 符合JTAG 标准的边界扫描功能l 支持扩展的片内调试功能l 通过JTAG 接口实现对Flash、EEPROM、熔丝位和锁定位的编程外设特点u 两个具有独立预分频器和比较器功能的8位定时器/计数器l 一个具有预分频器、比较功能和捕捉功能的16位定时器/计数器l 具有独立振荡器的实时计数器RTCl 四通道PWMl 8路10位ADC,8个单端通道,2个具有可编程增益(1x, 10x, 或200x)的差分通道l 面向字节的两线接口l 两个可编程的串行USARTl 可工作于主机/ 从机模式的SPI 串行接口l 具有独立片内振荡器的可编程看门狗定时器l 片内模拟比较器u 特殊的处理器特点l 上电复位以及可编程的掉电检测l 片内经过标定的RC振荡器l 片内/片外中断源l 6种睡眠模式: 空闲模式、ADC 噪声抑制模式、省电模式、掉电模式、Standby 模式以及扩展的Standby模式u I/O和封装l 32个可编程的I/O口l 40引脚PDIP封装, 44引脚TQFP封装, 与44引脚MLF封装u 工作电压:l ATmega16L:2.7 - 5.5Vl ATmega16:4.5 - 5.5Vu 速度等级l 8MHz ATmega16Ll 0-16MHz ATmega16u ATmega16L在1MHz, 3V, 25°C时的功耗l 正常模式: 1.1 mAl 空闲模式: 0.35 mAl 掉电模式: < 1 μA
ATmega16特性简介与结构简介有什么区别呀
特性指: 高性能、低功耗的 8 位 AVR® 微处理器 • 先进的RISC结构 – 131 条指令 – 大多数指令执行时间为单个时钟周期 –32 个8 位通用工作寄存器 – 全静态工作 – 工作于16 MHz 时性能高达16 MIPS – 只需两个时钟周期的硬件乘法器 • 非易失性程序和数据存储器 – 16K 字节的系统内可编程 Flash 擦写寿命: 10,000 次 – 具有独立锁定位的可选Boot 代码区 通过片上Boot 程序实现系统内编程 真正的同时读写操作 – 512 字节的EEPROM 擦写寿命: 100,000 次 –1K 字节的片内SRAM – 可以对锁定位进行编程以实现用结构特点: 两个具有独立预分频器和比较器功能的8 位定时器/ 计数器 – 一个具有预分频器、比较功能和捕捉功能的16 位定时器 /计数器 – 具有独立振荡器的实时计数器RTC – 四通道PWM –8路 10 位ADC 8 个单端通道 TQFP 封装的7 个差分通道 2个具有可编程增益 (1x, 10x, 或200x)的差分通道 – 面向字节的两线接口 – 两个可编程的串行USART – 可工作于主机/从机模式的 SPI串行接口 – 具有独立片内振荡器的可编程看门狗定时器 – 片内模拟比较器
ATmega16单片机的引脚功能
引脚名称 引脚功能说明VCC 电源正GND 电源地端口A(PA7..PA0) 端口A 做为A/D 转换器的模拟输入端。端口A 为8 位双向I/O 口,具有可编程的内部上拉电阻。其输出缓冲器具有对称的驱动特性,可以输出和吸收大电流。作为输入使用时,若内部上拉电阻使能,端口被外部电路拉低时将输出电流。在复位过程中,即使系统时钟还未起振,端口A 处于高阻状态。端口B(PB7..PB0) 端口B 为8 位双向I/O 口,具有可编程的内部上拉电阻。其输出缓冲器具有对称的驱动特性,可以输出和吸收大电流。作为输入使用时,若内部上拉电阻使能,端口被外部电路拉低时将输出电流。在复位过程中,即使系统时钟还未起振,端口B 处于高阻状态。端口B 也可以用做其他不同的特殊功能.端口C(PC7..PC0) 端口C 为8 位双向I/O 口,具有可编程的内部上拉电阻。其输出缓冲器具有对称的驱动特性,可以输出和吸收大电流。作为输入使用时,若内部上拉电阻使能,端口被外部电路拉低时将输出电流。在复位过程中,即使系统时钟还未起振,端口C 处于高阻状态。如果JTAG接口使能,即使复位出现引脚 PC5(TDI)、 PC3(TMS)与 PC2(TCK)的上拉电阻被激活。端口C 也可以用做其他不同的特殊功能.端口D(PD7..PD0) 端口D 为8 位双向I/O 口,具有可编程的内部上拉电阻。其输出缓冲器具有对称的驱动特性,可以输出和吸收大电流。作为输入使用时,若内部上拉电阻使能,则端口被外部电路拉低时将输出电流。在复位过程中,即使系统时钟还未起振,端口D 处于高阻状态。端口D 也可以用做其他不同的特殊功能.RESET 复位输入引脚。持续时间超过最小门限时间的低电平将引起系统复位。门限时间见P36Table 15。持续时间小于门限间的脉冲不能保证可靠复位。XTAL1 反向振荡放大器与片内时钟操作电路的输入端。XTAL2 反向振荡放大器的输出端。AVCC AVCC是端口A与A/D转换器的电源。不使用ADC时,该引脚应直接与VCC连接。使用ADC时应通过一个低通滤波器与VCC 连接。AREF A/D 的模拟基准输入引脚。
AVR单片机是什么内核
AVR单片机内核就是AVR内核,和51内核是不一样的,如果内核一样的话,那它的汇编指令应该是一样的,实际上他们的汇编指令是完全不一样的。AVR是美国ATMEL公司研发的,ATMEL公司有三大系列MCU,一种是老式的以8051内核的单片机,第二种是目前大量使用的以AVR内核的AVR单片机。第三种是目前高端的以ARM内核的微处理器。ARM已经不是单片机那么简单的概念了,差不多跟电脑CPU类似了。现在手机上的CPU就是ARM的。