超高频标签

时间:2024-07-15 12:52:36编辑:分享君

超高频、低频与高频RFID电子标签的区别是什么?

一.超高频RFID电子标签(UHF):超高频的射频标签简称为微波射频标签UHF及微波频段的RFID一般采用电磁发射原理工作频率:超高频(902MHz~928MHz)符合标准:EPC C1G2(ISO 18000-6C)可用数据区:240位EPC码标签识别符:(TID) 64位工作模式:可读写 天线极化:线极化1.超高频标签的阅读距离大,可达10米以上。2.超高频作用范围广,现最先进的物联网技术都是采用超高频电子标签技术。3.传送数据速度快,每秒可达单标签读取速率170张/秒(EPC C1G2标签)4.标签存贮数据量大。5.超高频电子标签灵活性强,轻易就可以识别得到。6.有很高的数据传输速率,在很短的时间内可以读取大量的电子标签。7.防冲突机制,适合于多标签读取,单次可批量读取多个电子标签。8.电子标签的天线一般是长条和标签状。天线有线性和圆极化两种设计,满足不同应用的需求。9.数据保存时间 >10年。10.手持读写器可对超高频电子标签进行读写操作。11.手持读写器可对超高频电子标签进行批量操作。12.手持读写器带CE操作系统,读取超高频电子标签数据时,可通过WIFI、GPRS实时上传至后台数据库。13.手持读写器相当一台PDA电脑,通过读取超高频电子标签数据,可在手持读写器完成读及写动作,且可在手持读写器即时查询标签数据。(如厂家信息、生产批号、生产日期等等)14.超高频电子标签具有全球唯一的ID号,安全保密性强,不易被破解。二.低频(LF)和高频(HF):低频(LF)和高频(HF)频段RFID电子标签一般采用电磁耦合原理高频典型工作频率为13.56MHz。该频段的射频标签,因其工作原理与低频标签完全相同,即采用电感耦合方式工作,所以宜将其归为低频标签类中。另一方面,根据无线电频率的一般划分,其工作频段又称为高频,所以也常将其称为高频标签。工作频率: 低频(125KHz)、高频(13.54MHz)1.低频标签的阅读距离只能在5厘米以内。2.低频作用范围现在主要是运用于低端技术领域范围内,如自动停车场收费和车辆管理系统等等。3.传送数据速度较慢。4.标签存贮数据量较少。5.低频电子标签灵活性差,不易被识别。6.数据传输速率低,在短时间内只可以一对一的读取电子标签。7.只能适合低速、近距离识别应用。8.与超高频电子标签相比,标签天线匝数更多,成本更高一些。9.读取的距离小,低频标签与阅读器之间传送数据时,低频标签需位于阅读器天线辐射的近场区内。低频标签的阅读距离一般情况下小于8厘米。10.读取电子标签数据时只能一对一进行读取。11.手持读写器读取电子标签时不能实时上传数据,必须通过USB连接电脑才能把数据上传至后台。12.手持读写器不能实时查询数据。13.低频电子标签安全保密性差,易被破解。


如何选择合适的超高频RFID电子标签

一、对标签应用的环境问题
特别是超高频RFID产品,金属和液体对其性能影响较大。因此,应用的环境是金属还是非金属,液体还是塑料、玻璃、木头等等,是首要考虑的问题。
原材料对射频信号的直接影响:金属对RFID标签的射频信号有影响,使用于金属物品或有很多金属影响的工作环境里,务必使用抗金属电子标签,那样才能够降低金属对标签数据信号的影响,方便RFID电子标签能够正常使用。
超高频RFID标签性能易受环境影响,如需确定该产品是否适用于实际的应用环境,在前期测试阶段,必须直接用于物体上测试的性能才有参考价值。
二、对标签识别距离的影响因素
读取距离与读写器及天线也有直接关系,需要明确标签与读写器天线的安装位置和角度关系。同时,功率选择、天线增益、极化方式、辐射角度这些参数都属于需要被考虑的范畴。
在整个RFID系统中,每个细节都可能影响实际的读取距离,和能否最终达到项目要求,甚至是馈线(连接天线和读写器的线缆)的长度等都需要考虑到位。
三、对标签的尺寸大小的认识理解
在我们过去众多的项目经验中,往往客户都希望标签尺寸很小,这样既好看又安装方便。
但是,标签的尺寸恰恰是决定标签性能的主要因素之一。一般而言,尺寸越大,标签性能可以设计得越好,生产厂家不一样的、型号规格不一样的,集成ic的生产工艺和天线的制造技术不同,价格有一定的差异,消费者要按照实际使用情况和费用预算进行挑选。


超高频与低频、高频RFID电子标签的区别?

一.超高频RFID电子标签(UHF):\x0d\x0a超高频的射频标签简称为微波射频标签\x0d\x0aUHF及微波频段的RFID一般采用电磁发射原理\x0d\x0a工作频率:超高频(902MHz~928MHz)\x0d\x0a符合标准:EPC C1G2(ISO 18000-6C)\x0d\x0a可用数据区:240位EPC码\x0d\x0a标签识别符:(TID) 64位\x0d\x0a工作模式:可读写 \x0d\x0a天线极化:线极化\x0d\x0a1.超高频标签的阅读距离大,可达10米以上。\x0d\x0a2.超高频作用范围广,现最先进的物联网技术都是采用超高频电子标签技术。\x0d\x0a3.传送数据速度快,每秒可达单标签读取速率170张/秒(EPC C1G2标签)\x0d\x0a4.标签存贮数据量大。\x0d\x0a5.超高频电子标签灵活性强,轻易就可以识别得到。\x0d\x0a6.有很高的数据传输速率,在很短的时间内可以读取大量的电子标签。\x0d\x0a7.防冲突机制,适合于多标签读取,单次可批量读取多个电子标签。\x0d\x0a8.电子标签的天线一般是长条和标签状。天线有线性和圆极化两种设计,满足不同应用的需求。\x0d\x0a9.数据保存时间 >10年。\x0d\x0a10.手持读写器可对超高频电子标签进行读写操作。\x0d\x0a11.手持读写器可对超高频电子标签进行批量操作。\x0d\x0a12.手持读写器带CE操作系统,读取超高频电子标签数据时,可通过WIFI、GPRS实时上传至后台数据库。\x0d\x0a13.手持读写器相当一台PDA电脑,通过读取超高频电子标签数据,可在手持读写器完成读及写动作,且可在手持读写器即时查询标签数据。(如厂家信息、生产批号、生产日期等等)\x0d\x0a14.超高频电子标签具有全球唯一的ID号,安全保密性强,不易被破解。\x0d\x0a\x0d\x0a二.低频(LF)和高频(HF):\x0d\x0a低频(LF)和高频(HF)频段RFID电子标签一般采用电磁耦合原理\x0d\x0a高频典型工作频率为13.56MHz。该频段的射频标签,因其工作原理与低频标签完全相同,即采用电感耦合方式工作,所以宜将其归为低频标签类中。另一方面,根据无线电频率的一般划分,其工作频段又称为高频,所以也常将其称为高频标签。\x0d\x0a工作频率: 低频(125KHz)、高频(13.54MHz)\x0d\x0a1.低频标签的阅读距离只能在5厘米以内。\x0d\x0a2.低频作用范围现在主要是运用于低端技术领域范围内,如自动停车场收费和车辆管理系统等等。\x0d\x0a3.传送数据速度较慢。\x0d\x0a4.标签存贮数据量较少。\x0d\x0a5.低频电子标签灵活性差,不易被识别。\x0d\x0a6.数据传输速率低,在短时间内只可以一对一的读取电子标签。\x0d\x0a7.只能适合低速、近距离识别应用。\x0d\x0a8.与超高频电子标签相比,标签天线匝数更多,成本更高一些。\x0d\x0a9.读取的距离小,低频标签与阅读器之间传送数据时,低频标签需位于阅读器天线辐射的近场区内。低频标签的阅读距离一般情况下小于8厘米。\x0d\x0a10.读取电子标签数据时只能一对一进行读取。\x0d\x0a11.手持读写器读取电子标签时不能实时上传数据,必须通过USB连接电脑才能把数据上传至后台。\x0d\x0a12.手持读写器不能实时查询数据。\x0d\x0a13.低频电子标签安全保密性差,易被破解。


超高频、低频与高频RFID电子标签的区别是什么?

一.超高频RFID电子标签(UHF):
超高频的射频标签简称为微波射频标签
UHF及微波频段的RFID一般采用电磁发射原理
工作频率:超高频(902MHz~928MHz)
符合标准:EPC C1G2(ISO 18000-6C)
可用数据区:240位EPC码
标签识别符:(TID) 64位
工作模式:可读写
天线极化:线极化
1.超高频标签的阅读距离大,可达10米以上。
2.超高频作用范围广,现最先进的物联网技术都是采用超高频电子标签技术。
3.传送数据速度快,每秒可达单标签读取速率170张/秒(EPC C1G2标签)
4.标签存贮数据量大。
5.超高频电子标签灵活性强,轻易就可以识别得到。
6.有很高的数据传输速率,在很短的时间内可以读取大量的电子标签。
7.防冲突机制,适合于多标签读取,单次可批量读取多个电子标签。
8.电子标签的天线一般是长条和标签状。天线有线性和圆极化两种设计,满足不同应用的需求。
9.数据保存时间 >10年。
10.手持读写器可对超高频电子标签进行读写操作。
11.手持读写器可对超高频电子标签进行批量操作。
12.手持读写器带CE操作系统,读取超高频电子标签数据时,可通过WIFI、GPRS实时上传至后台数据库。
13.手持读写器相当一台PDA电脑,通过读取超高频电子标签数据,可在手持读写器完成读及写动作,且可在手持读写器即时查询标签数据。(如厂家信息、生产批号、生产日期等等)
14.超高频电子标签具有全球唯一的ID号,安全保密性强,不易被破解。

二.低频(LF)和高频(HF):
低频(LF)和高频(HF)频段RFID电子标签一般采用电磁耦合原理
高频典型工作频率为13.56MHz。该频段的射频标签,因其工作原理与低频标签完全相同,即采用电感耦合方式工作,所以宜将其归为低频标签类中。另一方面,根据无线电频率的一般划分,其工作频段又称为高频,所以也常将其称为高频标签。
工作频率: 低频(125KHz)、高频(13.54MHz)
1.低频标签的阅读距离只能在5厘米以内。
2.低频作用范围现在主要是运用于低端技术领域范围内,如自动停车场收费和车辆管理系统等等。
3.传送数据速度较慢。
4.标签存贮数据量较少。
5.低频电子标签灵活性差,不易被识别。
6.数据传输速率低,在短时间内只可以一对一的读取电子标签。
7.只能适合低速、近距离识别应用。
8.与超高频电子标签相比,标签天线匝数更多,成本更高一些。
9.读取的距离小,低频标签与阅读器之间传送数据时,低频标签需位于阅读器天线辐射的近场区内。低频标签的阅读距离一般情况下小于8厘米。
10.读取电子标签数据时只能一对一进行读取。
11.手持读写器读取电子标签时不能实时上传数据,必须通过USB连接电脑才能把数据上传至后台。
12.手持读写器不能实时查询数据。
13.低频电子标签安全保密性差,易被破解。


超高频与低频、高频RFID电子标签的区别以及优缺点

  一.超高频RFID电子标签(UHF):
  超高频的射频标签简称为微波射频标签,UHF及微波频段的RFID一般采用电磁发射原理
  工作频率:超高频(902MHz~928MHz)
  符合标准:EPC C1G2(ISO 18000-6C)
  可用数据区:240位EPC码
  标签识别符:(TID) 64位
  工作模式:可读写
  天线极化:线极化
  1.超高频标签的阅读距离大,可达10米以上。
  2.超高频作用范围广,现最先进的物联网技术都是采用超高频电子标签技术。
  3.传送数据速度快,每秒可达单标签读取速率170张/秒(EPC C1G2标签)
  4.标签存贮数据量大。
  5.超高频电子标签灵活性强,轻易就可以识别得到。
  6.有很高的数据传输速率,在很短的时间内可以读取大量的电子标签。
  7.防冲突机制,适合于多标签读取,单次可批量读取多个电子标签。
  8.电子标签的天线一般是长条和标签状。天线有线性和圆极化两种设计,满足不同应用的需求。
  9.数据保存时间 >10年。
  10.手持读写器可对超高频电子标签进行读写操作。
  11.手持读写器可对超高频电子标签进行批量操作。
  12.手持读写器带CE操作系统,读取超高频电子标签数据时,可通过WIFI、GPRS实时上传至后台数据库。
  13.手持读写器相当一台PDA电脑,通过读取超高频电子标签数据,可在手持读写器完成读及写动作,且可在手持读写器即时查询标签数据。(如厂家信息、生产批号、生产日期等等)
  14.超高频电子标签具有全球唯一的ID号,安全保密性强,不易被破解。
  15.智能控制;高可靠性;高保密性;易操作;方便查询;读写性能更加完善。
  二.低频(LF)和高频(HF):
  低频(LF)和高频(HF)频段RFID电子标签一般采用电磁耦合原理
  高频典型工作频率为13.56MHz。该频段的射频标签,因其工作原理与低频标签完全相同,即采用电感耦合方式工作,所以宜将其归为低频标签类中。另一方面,根据无线电频率的一般划分,其工作频段又称为高频,所以也常将其称为高频标签。
  工作频率: 低频(125KHz)、高频(13.54MHz)
  1.低频标签的阅读距离只能在5厘米以内。
  2.低频作用范围现在主要是运用于低端技术领域范围内,如自动停车场收费和车辆管理系统等等。
  3.传送数据速度较慢。
  4.标签存贮数据量较少。
  5.低频电子标签灵活性差,不易被识别。
  6.数据传输速率低,在短时间内只可以一对一的读取电子标签。
  7.只能适合低速、近距离识别应用。
  8.与超高频电子标签相比,标签天线匝数更多,成本更高一些。
  9.读取的距离小,低频标签与阅读器之间传送数据时,低频标签需位于阅读器天线辐射的近场区内。低频标签的阅读距离一般情况下小于8厘米。
  10.读取电子标签数据时只能一对一进行读取。
  11.手持读写器读取电子标签时不能实时上传数据,必须通过USB连接电脑才能把数据上传至后台。
  12.手持读写器不能实时查询数据。
  13.大部分低频不可写。
  14.低频电子标签安全保密性差,易被破解。


RFID 有源标签和无源标签有什么区别?

最基本的RFID系统由电子标签、读写器和计算机网络等这三部分组成构成。电子标签(Tag):电子标签包含电子芯片和天线,天线在标签和读取器间传递射频信号,电子芯片用来存储物体的数据,天线用来收发无线电波。电子标签按供电方式分为无源电子标签、有源电子标签和半有源电子标签三种:无源电子标签:标签内部没有电池,其工作能量均需阅读器发射的电磁场来提供,重量轻、体积小、寿命长、成本低,可制成各种卡片,是目前最流行的电子标签形式。其识别距离比有源系统要小,一般为几米到十几米,而且需要较大的阅读器发射功率。有源电子标签:通过标签内部的电池来供电,不需要阅读器提供能量来启动,标签可主动发射电磁信号,识别距离较长,通常可达几十米甚至上百米,缺点是成本高寿命有限,而且不易做成薄卡。半有源电子标签:内有电池,但电池只对标签内部电路供电,并不主动发射信号,其能量传递方式与无源系统类似,因此其工作寿命比一般有源系统标签要长许多。

rfid在识别多标签上,高频的好还是超高频的好

超高频的好。对比原因如下:1.低频段射频标签 低频段射频标签,简称为低频标签,其工作频率范围为30kHz ~ 300kHz。典型工作频率有:125KHz,133KHz。低频标签一般为无源标签,其工作能量通过电感耦合方式从阅读器耦合线圈的辐射近场中获得。低频标签与阅读器之间传送数据时,低频标签需位于阅读器天线辐射的近场区内。低频标签的阅读距离一般情况下小于1米。低频标签的典型应用有:动物识别、容器识别、工具识别、电子闭锁防盗(带有内置应答器的汽车钥匙)等。与低频标签相关的国际标准有:ISO11784/11785(用于动物识别)、ISO18000-2(125-135 kHz)。低频标签有多种外观形式,应用于动物识别的低频标签外观有:项圈式、耳牌式、注射式、药丸式等。典型应用的动物有牛、信鸽等。低频标签的主要优势体现在:标签芯片一般采用普通的CMOS工艺,具有省电、廉价的特点;工作频率不受无线电频率管制约束;可以穿透水、有机组织、木材等;非常适合近距离的、低速度的、数据量要求较少的识别应用(例如:动物识别)等。低频标签的劣势主要体现在:标签存贮数据量较少;只能适合低速、近距离识别应用;与高频标签相比:标签天线匝数更多,成本更高一些;2. 中高频段射频标签 中高频段射频标签的工作频率一般为3MHz ~ 30MHz。典型工作频率为:13.56MHz。该频段的射频标签,从射频识别应用角度来说,因其工作原理与低频标签完全相同,即采用电感耦合方式工作,所以宜将其归为低频标签类中。另一方面,根据无线电频率的一般划分,其工作频段又称为高频,如表2.2所示,所以也常将其称为高频标签。鉴于该频段的射频标签可能是实际应用中最大量的一种射频标签,因而我们只要将高、低理解成为一个相对的概念,即不会在此造成理解上的混乱。为了便于叙述,我们将其称为中频射频标签。中频标签一般也采用无源设主,其工作能量同低频标签一样,也是通过电感(磁)耦合方式从阅读器耦合线圈的辐射近场中获得。标签与阅读器进行数据交换时,标签必须位于阅读器天线辐射的近场区内。中频标签的阅读距离一般情况下也小于1米。中频标签由于可方便地做成卡状,典型应用包括:电子车票、电子身份证、电子闭锁防盗(电子遥控门锁控制器)等。相关的国际标准有:ISO14443、ISO15693、ISO18000-3(13.56MHz)等。中频标准的基本特点与低频标准相似,由于其工作频率的提高,可以选用较高的数据传输速率。射频标签天线设计相对简单,标签一般制成标准卡片形状。3.超高频与微波标签 超高频与微波频段的射频标签,简称为微波射频标签,其典型工作频率为:433.92MHz,862(902)~928MHz,2.45GHz,5.8GHz。微波射频标签可分为有源标签与无源标签两类。工作时,射频标签位于阅读器天线辐射场的远区场内,标签与阅读器之间的耦合方式为电磁耦合方式。阅读器天线辐射场为无源标签提供射频能量,将有源标签唤醒。相应的射频识别系统阅读距离一般大于1m,典型情况为4~6m,最大可达10m以上。阅读器天线一般均为定向天线,只有在阅读器天线定向波束范围内的射频标签可被读/写。由于阅读距离的增加,应用中有可能在阅读区域中同时出现多个射频标签的情况,从而提出了多标签同时读取的需求,进而这种需求发展成为一种潮流。目前,先进的射频识别系统均将多标签识读问题作为系统的一个重要特征。以目前技术水平来说,无源微波射频标签比较成功产品相对集中在902~928MHz工作频段上。2.45GHz和5.8GHz射频识别系统多以半无源微波射频标签产品面世。半无源标签一般采用钮扣电池供电,具有较远的阅读距离。微波射频标签的典型特点主要集中在是否无源、无线读写距离、是否支持多标签读写、是否适合高速识别应用,读写器的发射功率容限,射频标签及读写器的价格等方面。典型的微波射频标签的识读距离为3~5m,个别有达10m或10m以上的产品。对于可无线写的射频标签而言,通常情况下,写入距离要小于识读距离,其原因在于写入要求更大的能量。微波射频标签的数据存贮容量一般限定在2Kbits以内,再大的存贮容量是乎没有太大的意义,从技术及应用的角度来说,微波射频标签并不适合作为大量数据的载体,其主要功能在于标识物品并完成无接触的识别过程。典型的数据容量指标有:1Kbits,128Bits,64Bits等。由Auto-ID Center制定的产品电子代码EPC的容量为:90Bits。微波射频标签的典型应用包括:移动车辆识别、电子身份证、仓储物流应用、电子闭锁防盗(电子遥控门锁控制器)等。相关的国际标准有:ISO10374,ISO18000-4(2.45GHz)、-5(5.8GHz)、-6(860-930 MHz)、-7(433.92 MHz),ANSI NCITS256-1999等。

谁能说下电子标签的种类及参数?

射频识别即RFID(Radio Frequency IDentification)技术,又称电子标签、无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。常用的有低频(125k~134.2K)、高频(13.56Mhz)、超高频,无源等技术。RFID读写器也分移动式的和固定式的,目前RFID技术应用很广,如:图书馆,门禁系统,食品安全溯源等
常用频段:低频、高频、超高频
目前,RFID技术中所衍生的产品大概有三大类:无源RFID产品、有源RFID产品、半有源RFID产品。
  无源RFID产品发展最早,也是目前发展最成熟,市场应用最广的产品。比如,公交卡、食堂餐卡、银行卡、宾馆门禁卡、二代身份证等,这个在我们的日常生活中随处可见,属于近距离接触式识别类。其产品的主要工作频率有低频125KHZ、高频13.56MHZ、超高频433MHZ,超高频915MHZ。
  有源RFID产品,是最近几年慢慢发展起来的,其远距离自动识别的特性,决定了其巨大的应用空间和市场潜质。目前,在远距离自动识别领域,如智能监狱,智能医院,智能停车场,智能交通,智慧城市,智慧地球及物联网等领域有重大应用。有源RFID在这个领域异军突起,属于远距离自动识别类。产品主要工作频率有超高频915MHZ,微波2.45GHZ。
  有源RFID产品和无源RFID产品,其不同的特性,决定了不同的应用领域和不同的应用模式,也有各自的优势所在。但在本系统中,我们着重介绍介于有源RFID和无源RFID之间的半有源RFID产品,该产品集有源RFID和无源RFID的优势于一体,在门禁进出管理,人员精确定位,区域定位管理,周界管理,电子围栏及安防报警等领域有着很大的优势。
  半有源RFID产品,结合有源RFID产品及无源RFID产品的优势,在低频125KHZ频率的触发下,让微波2.45G发挥优势。半有源RFID技术,也可以叫做低频激活触发技术,利用低频近距离精确定位,微波远距离识别和上传数据,来解决单纯的有源RFID和无源RFID没有办法实现的功能。简单的说,就是近距离激活定位,远距离识别及上传数据。
  半有源RFID是一项易于操控、简单实用且特别适合用于自动化控制的灵活性应用技术,识别工作无须人工干预,它既可支持只读工作模式也可支持读写工作模式,且无需接触或瞄准;可在各种恶劣环境下自由工作,短距离射频产品不怕油渍、灰尘污染等恶劣的环境,可以替代条码,例如用在工厂的流水线上跟踪物体;长距射频产品多用于交通上,识别距离可达几十米,如自动收费或识别车辆身份等。


如何选用RFID超高频电子标签

  1.选择与打印机(编码器)匹配的标签类型。选择的标签种类必须与你的打印机(编码器)以及应用环境匹配,这是RFID超高频电子标签的成功应用的关键。数据传输的速率、存储器、天线的设计、标签的写入功能等方面都需要进行评估,确保标签能够工作正常。有些标签供应商也可能会有不同的规格说明,或者增加一些专利的与应用有关或者无关的功能,这时就应该要求供应商推荐最适合自己应用的超高频电子标签。  2.在大批量订购RFID超高频电子标签前进行小批量测试。在订购为你定制的超高频电子标签前,必须从你的打印机(编码器)制造商那里取得有关对应答器(即RFID标签)设置位置的要求。在试样测试或者小批量测试阶段,这些标签必须能够完全满足你的应用需要,然后再决定是否大批量订购。  3.RFID标签的储存温度应该适当,其储存温度应该在-60到203华氏度之间(15.5到95摄氏度),环境条件应该稳定。不可让标签曝露在有静电环境,否则会影响标签性能。在低湿度环境应用RFID超高频电子标签时,最好使用防静电布或者防静电垫子以消除静电影响。  4.培训员工使标签打印取得成功。标签打印机(编码器)有许多针对你的使用环境的参数设置,有各自的特点和特殊的RFID技术要求,必须事先对员工进行充分培训,才能避免RFID标签打印可能出现的差错。  5.对标签打印机(编码器)进行校正,保证打印正确。标签开始打印前先调整打印机(编码器),保证标签卷带在打印机(编码器)内有正确的引导间隙和节距(两个标签之间的距离)。对每一批新的标签卷带,开始打印前必须调整一次。如果是某种标签的专用打印机,各项参数、间隙已经设定完成,就可以免去这项校正操作。有的标签打印机(编码器)具有自动校正功能,校正操作就会简单一些。  6.避免使用金属箔片基质的标签,因为金属箔片会反射无线电波信号,对RFID会产生干扰。带有金属薄片或者含金属墨水的标签会严重影响准确打印(编码),也会严重影响读取距离。  7.注意标签表面的水气。水气或者其他液体可以成为RFID性能发挥的障碍,因为液体可以吸收无线电信号,从而限制读取距离或者使标签的读写操作困难。标签的粘接剂也是一种液体,某些粘接剂或者标签材料会吸收水分,也会影响标签性能的发挥。  8.适当隔离RFID设备。无线电设备如果距离太近就会互相干扰,标签打印机应该与同一波段的其它产品如天线、读取器、无线LANS或者其它标签打印机保持足够的距离。  9.采用打印机管理软件,发现经常出现的故障。理想的状态是打印机能够一次完成标签打印任务,但也会常常出现首次打印不成功的情况。如果经常出现这种情况说明打印机可能存在缺陷。在你的整个RFID架构内安装可*的打印机和打印机伺服管理软件,一旦出现小的故障就会发出警告,这样可以避免产生严重后果。


请问低频 高频 超高频三种rfid 标签 有什麼差别

低频:125KHZ 电磁感应近场耦合原理,特点是距离近,受外界干扰小
高频:13.56MHz 分14443A/B,15693协议 14443A/B是电磁感应近场耦合原理,距离近 但有很多加密协议,主要用于身份识别场合 15693协议是电磁感应近远场耦合原理 距离相对较远,主要受金属的干扰
超高频:860-960MHz 是射频反射原理,特点是距离远,但受外界干扰大.
要了解本质的区别可以从电磁波的原理入手.


超高频与低频、高频RFID电子标签的区别以及优缺点

一.超高频RFID电子标签(UHF):
超高频的射频标签简称为微波射频标签
UHF及微波频段的RFID一般采用电磁发射原理
工作频率:超高频(902MHz~928MHz)
符合标准:EPC C1G2(ISO 18000-6C)
可用数据区:240位EPC码
标签识别符:(TID) 64位
工作模式:可读写
天线极化:线极化
1.超高频标签的阅读距离大,可达10米以上。
2.超高频作用范围广,现最先进的物联网技术都是采用超高频电子标签技术。
3.传送数据速度快,每秒可达单标签读取速率170张/秒(EPC C1G2标签)
4.标签存贮数据量大。
5.超高频电子标签灵活性强,轻易就可以识别得到。
6.有很高的数据传输速率,在很短的时间内可以读取大量的电子标签。
7.防冲突机制,适合于多标签读取,单次可批量读取多个电子标签。
8.电子标签的天线一般是长条和标签状。天线有线性和圆极化两种设计,满足不同应用的需求。
9.数据保存时间 >10年。
10.手持读写器可对超高频电子标签进行读写操作。
11.手持读写器可对超高频电子标签进行批量操作。
12.手持读写器带CE操作系统,读取超高频电子标签数据时,可通过WIFI、GPRS实时上传至后台数据库。
13.手持读写器相当一台PDA电脑,通过读取超高频电子标签数据,可在手持读写器完成读及写动作,且可在手持读写器即时查询标签数据。(如厂家信息、生产批号、生产日期等等)
14.超高频电子标签具有全球唯一的ID号,安全保密性强,不易被破解。

二.低频(LF)和高频(HF):
低频(LF)和高频(HF)频段RFID电子标签一般采用电磁耦合原理
高频典型工作频率为13.56MHz。该频段的射频标签,因其工作原理与低频标签完全相同,即采用电感耦合方式工作,所以宜将其归为低频标签类中。另一方面,根据无线电频率的一般划分,其工作频段又称为高频,所以也常将其称为高频标签。
工作频率: 低频(125KHz)、高频(13.54MHz)
1.低频标签的阅读距离只能在5厘米以内。
2.低频作用范围现在主要是运用于低端技术领域范围内,如自动停车场收费和车辆管理系统等等。
3.传送数据速度较慢。
4.标签存贮数据量较少。
5.低频电子标签灵活性差,不易被识别。
6.数据传输速率低,在短时间内只可以一对一的读取电子标签。
7.只能适合低速、近距离识别应用。
8.与超高频电子标签相比,标签天线匝数更多,成本更高一些。
9.读取的距离小,低频标签与阅读器之间传送数据时,低频标签需位于阅读器天线辐射的近场区内。低频标签的阅读距离一般情况下小于8厘米。
10.读取电子标签数据时只能一对一进行读取。
11.手持读写器读取电子标签时不能实时上传数据,必须通过USB连接电脑才能把数据上传至后台。
12.手持读写器不能实时查询数据。
13.低频电子标签安全保密性差,易被破解


超高频与低频、高频RFID电子标签的区别?

一.超高频RFID电子标签(UHF):
超高频的射频标签简称为微波射频标签
UHF及微波频段的RFID一般采用电磁发射原理
工作频率:超高频(902MHz~928MHz)
符合标准:EPC C1G2(ISO 18000-6C)
可用数据区:240位EPC码
标签识别符:(TID) 64位
工作模式:可读写
天线极化:线极化
1.超高频标签的阅读距离大,可达10米以上。
2.超高频作用范围广,现最先进的物联网技术都是采用超高频电子标签技术。
3.传送数据速度快,每秒可达单标签读取速率170张/秒(EPC C1G2标签)
4.标签存贮数据量大。
5.超高频电子标签灵活性强,轻易就可以识别得到。
6.有很高的数据传输速率,在很短的时间内可以读取大量的电子标签。
7.防冲突机制,适合于多标签读取,单次可批量读取多个电子标签。
8.电子标签的天线一般是长条和标签状。天线有线性和圆极化两种设计,满足不同应用的需求。
9.数据保存时间 >10年。
10.手持读写器可对超高频电子标签进行读写操作。
11.手持读写器可对超高频电子标签进行批量操作。
12.手持读写器带CE操作系统,读取超高频电子标签数据时,可通过WIFI、GPRS实时上传至后台数据库。
13.手持读写器相当一台PDA电脑,通过读取超高频电子标签数据,可在手持读写器完成读及写动作,且可在手持读写器即时查询标签数据。(如厂家信息、生产批号、生产日期等等)
14.超高频电子标签具有全球唯一的ID号,安全保密性强,不易被破解。

二.低频(LF)和高频(HF):
低频(LF)和高频(HF)频段RFID电子标签一般采用电磁耦合原理
高频典型工作频率为13.56MHz。该频段的射频标签,因其工作原理与低频标签完全相同,即采用电感耦合方式工作,所以宜将其归为低频标签类中。另一方面,根据无线电频率的一般划分,其工作频段又称为高频,所以也常将其称为高频标签。
工作频率: 低频(125KHz)、高频(13.54MHz)
1.低频标签的阅读距离只能在5厘米以内。
2.低频作用范围现在主要是运用于低端技术领域范围内,如自动停车场收费和车辆管理系统等等。
3.传送数据速度较慢。
4.标签存贮数据量较少。
5.低频电子标签灵活性差,不易被识别。
6.数据传输速率低,在短时间内只可以一对一的读取电子标签。
7.只能适合低速、近距离识别应用。
8.与超高频电子标签相比,标签天线匝数更多,成本更高一些。
9.读取的距离小,低频标签与阅读器之间传送数据时,低频标签需位于阅读器天线辐射的近场区内。低频标签的阅读距离一般情况下小于8厘米。
10.读取电子标签数据时只能一对一进行读取。
11.手持读写器读取电子标签时不能实时上传数据,必须通过USB连接电脑才能把数据上传至后台。
12.手持读写器不能实时查询数据。
13.低频电子标签安全保密性差,易被破解。


上一篇:geforce4

下一篇:印时代