如何自己检查NodeJS的代码是否存在内存泄漏
首先,我们检查了代码,发现所有的代码都是用new来分配内存,用delete来释放内存。那么,我们能够用一个全程替换,来替换掉所有的new和delete操作符吗?不能。因为代码的规模太大了,那样做除了浪费时间没有别的任何好处。好在我们的源代码是用C++来写成的,所以,这意味着没有必要替换掉所有的new和delete,而只用重载这两个操作符。对了,值用重载这两个操作符,我们就能在分配和释放内存之前做点什么。这是一个绝对的好消息。我们也知道该如何去做。因为,MFC也是这么做的。我们需要做的是:跟踪所有的内存分配和交互引用以及内存释放。我们的源代码使用Visual C++写成,当然这种解决方法也可以很轻松的使用在别的C++代码里面。要做的第一件事情是重载new和delete操作符,它们将会在所有的代码中被使用到。我们在stdafx.h中,加入: #ifdef _DEBUG inline void * __cdecl operator new(unsigned int size, const char *file, int line) { }; inline void __cdecl operator delete(void *p) { }; #endif这样,我们就重载了new和delete操作符。我们用$ifdef和#endif来包住这两个重载操作符,这样,这两个操作符就不会在发布版本中出现。看一看这段代码,会发现,new操作符有三个参数,它们是,分配的内存大小,出现的文件名,和行号。这对于寻找内存泄漏是必需的和重要的。否则,就会需要很多时间去寻找它们出现的确切地方。加入了这段代码,我们的调用new()的代码仍然是指向只接受一个参数的new操作符,而不是这个接受三个参数的操作符。另外,我们也不想记录所有的new操作符的语句去包含__FILE__和__LINE__参数。我们需要做的是自动的让所有的接受一个参数的new操作符调用接受三个参数的new操作符。这一点可以用一点点小的技巧去做,例如下面的这一段宏定义, #ifdef _DEBUG #define DEBUG_NEW new(__FILE__, __LINE__) #else #define DEBUG_NEW new #endif #define new DEBUG_NEW 现在我们所有的接受一个参数的new操作符都成为了接受三个参数的new操作符号,__FILE__和__LINE__被预编译器自动的插入到其中了。然后,就是作实际的跟踪了。我们需要加入一些例程到我们的重载的函数中去,让它们能够完成分配内存和释放内存的工作。这样来做, #ifdef _DEBUG inline void * __cdecl operator new(unsigned int size, const char *file, int line) {void *ptr = (void *)malloc(size);AddTrack((DWORD)ptr, size, file, line);return(ptr); }; inline void __cdecl operator delete(void *p) {RemoveTrack((DWORD)p);free(p); }; #endif另外,还需要用相同的方法来重载new[]和delete[]操作符。这里就省略掉它们了。最后,我们需要提供一套函数AddTrack()和RemoveTrack()。我用STL来维护存储内存分配记录的连接表。这两个函数如下: typedef struct {DWORD address;DWORD size;char file[64];DWORD line; } ALLOC_INFO; typedef list AllocList; AllocList *allocList; void AddTrack(DWORD addr, DWORD asize, const char *fname, DWORD lnum) {ALLOC_INFO *info;if(!allocList) {allocList = new(AllocList);}info = new(ALLOC_INFO);info->address = addr;strncpy(info->file, fname, 63);info->line = lnum;info->size = asize;allocList->insert(allocList->begin(), info); }; void RemoveTrack(DWORD addr) {AllocList::iterator i;if(!allocList)return;for(i = allocList->begin(); i != allocList->end(); i++){if((*i)->address == addr){allocList->remove((*i));break;}} }; 现在,在我们的程序退出之前,allocList存储了没有被释放的内存分配。为了看到它们是什么和在哪里被分配的,我们需要打印出allocList中的数据。我使用了Visual C++中的Output窗口来做这件事情。 void DumpUnfreed() {AllocList::iterator i;DWORD totalSize = 0;char buf[1024];if(!allocList)return;for(i = allocList->begin(); i != allocList->end(); i++) {sprintf(buf, "%-50s: LINE %d, ADDRESS %d %d unfreed ",(*i)->file, (*i)->line, (*i)->address, (*i)->size);OutputDebugString(buf);totalSize += (*i)->size;}sprintf(buf, "----------------------------------------------------------- ");OutputDebugString(buf);sprintf(buf, "Total Unfreed: %d bytes ", totalSize);OutputDebugString(buf); }; 现在我们就有了一个可以重用的代码,用来监测跟踪所有的内存泄漏了。这段代码可以用来加入到所有的项目中去。虽然它不会让你的程序看起来更好,但是起码它能够帮助你检查错误,让程序更加的稳定。
如何在Node.js中检测内存泄漏
首先,检查了代码,发现所有的代码都是用new来分配内存,用delete来释放内存。那么,不能够用一个全程替换,来替换掉所有的new和delete操作符,因为代码的规模太大了,那样做除了浪费时间没有别的任何好处。好在源代码是用C++来写成的,所以,这意味着没有必要替换掉所有的new和delete,而只用重载这两个操作符。对了,值用重载这两个操作符,就能在分配和释放内存之前做点什么。这是一个绝对的好消息。也知道该如何去做。因为,MFC也是这么做的。需要做的是:跟踪所有的内存分配和交互引用以及内存释放。源代码使用Visual C++写成,当然这种解决方法也可以很轻松的使用在别的C++代码里面。要做的第一件事情是重载new和delete操作符,将会在所有的代码中被使用到。在stdafx.h中,加入:
#ifdef _DEBUG
inline void * __cdecl operator new(unsigned int size,
const char *file, int line)
{
};
inline void __cdecl operator delete(void *p)
{
};
#endif
这样,就重载了new和delete操作符。用$ifdef和#endif来包住这两个重载操作符,这样,这两个操作符就不会在发布版本中出现。看一看这段代码,会发现,new操作符有三个参数,它们是,分配的内存大小,出现的文件名,和行号。这对于寻找内存泄漏是必需的和重要的。否则,就会需要很多时间去寻找出现的确切地方。加入了这段代码,调用new()的代码仍然是指向只接受一个参数的new操作符,而不是这个接受三个参数的操作符。另外,也不想记录所有的new操作符的语句去包含__FILE__和__LINE__参数。需要做的是自动的让所有的接受一个参数的new操作符调用接受三个参数的new操作符。这一点可以用一点点小的技巧去做,例如下面的这一段宏定义,
#ifdef _DEBUG
#define DEBUG_NEW new(__FILE__, __LINE__)
#else
#define DEBUG_NEW new
#endif
#define new DEBUG_NEW
现在所有的接受一个参数的new操作符都成为了接受三个参数的new操作符号,__FILE__和__LINE__被预编译器自动的插入到其中了。然后,就是作实际的跟踪了。需要加入一些例程到重载的函数中去,让能够完成分配内存和释放内存的工作。这样来做, #ifdef _DEBUG
inline void * __cdecl operator new(unsigned int size,
const char *file, int line)
{
void *ptr = (void *)malloc(size);
AddTrack((DWORD)ptr, size, file, line);
return(ptr);
};
inline void __cdecl operator delete(void *p)
{
RemoveTrack((DWORD)p);
free(p);
};
#endif
另外,还需要用相同的方法来重载new[]和delete[]操作符。这里就省略掉它们了。
最后,需要提供一套函数AddTrack()和RemoveTrack()。用STL来维护存储内存分配记录的连接表。
这两个函数如下:
typedef struct {
DWORD address;
DWORD size;
char file[64];
DWORD line;
} ALLOC_INFO;
typedef list AllocList;
AllocList *allocList;
void AddTrack(DWORD addr, DWORD asize, const char *fname, DWORD lnum)
{
ALLOC_INFO *info;
if(!allocList) {
allocList = new(AllocList);
}
info = new(ALLOC_INFO);
info->address = addr;
strncpy(info->file, fname, 63);
info->line = lnum;
info->size = asize;
allocList->insert(allocList->begin(), info);
};
void RemoveTrack(DWORD addr)
{
AllocList::iterator i;
if(!allocList)
return;
for(i = allocList->begin(); i != allocList->end(); i++)
{
if((*i)->address == addr)
{
allocList->remove((*i));
break;
}
}
};
现在,在程序退出之前,allocList存储了没有被释放的内存分配。为了看到是什么和在哪里被分配的,需要打印出allocList中的数据。使用了Visual C++中的Output窗口来做这件事情。
void DumpUnfreed()
{
AllocList::iterator i;
DWORD totalSize = 0;
char buf[1024];
if(!allocList)
return;
for(i = allocList->begin(); i != allocList->end(); i++) {
sprintf(buf, "%-50s: LINE %d, ADDRESS %d %d unfreed ",
(*i)->file, (*i)->line, (*i)->address, (*i)->size);
OutputDebugString(buf);
totalSize += (*i)->size;
}
sprintf(buf, "----------------------------------------------------------- ");
OutputDebugString(buf);
sprintf(buf, "Total Unfreed: %d bytes ", totalSize);
OutputDebugString(buf);
};
现在就有了一个可以重用的代码,用来监测跟踪所有的内存泄漏了。这段代码可以用来加入到所有的项目中去。虽然它不会让你的程序看起来更好,但是起码它能够帮助你检查错误,让程序更加的稳定。
如何在linux操作系统下检测内存泄漏
内存泄漏是指程序动态申请的内存在使用完后没有释放,导致这段内存不能被操作系统回收再利用。 例如这段程序,申请了4个字节的空间但没有释放,有4个字节的内存泄漏。#include using namespace std;int main(){ int *p = new int(1); cout <<*p<<endl; return 0}123456789随着时间的推移,泄漏的内存越来越多,可用的内存越来越少,轻则性能受损,重则系统崩溃。一般情况下,发生内存泄漏时,重启就可以回收泄漏的内存。但是对于Linux,通常跑的是服务器程序,不可以随意重启,在内存泄漏问题上就要格外小心。内存泄漏特点难复现 — 要运行到足够长的时间才会暴露。难定位 — 出错位置是随机的,看不出与内存泄漏的代码有什么联系。最简单的方法为了避免写出内存泄漏的程序,通常会有这样的编程规范,要求我们在写程序时申请和释放成对出现的。因为每一次申请都意味着必须有一次释放与它相对应。基于这个特点,一种简单的方法就是在代码中统计申请和释放的次数,如果申请和释放的数量不同,就认为是内存泄漏了。#include "stdio.h"#include "stdlib.h"int malloc_count, free_count;void * my_malloc(int size){ malloc_count++; return malloc(size);}void my_free(void *p){ free_count++; free(p);}int main(){ count = 0; int *p1 = (int *)my_malloc(sizeif(int)) int *p2 = (int *)my_malloc(sizeif(int)) printf("%d, %d", p1, p2); my_free(p1); if(malloc_count != free_count) printf("memory leak!\n"); return 0}1234567891011121314151617181920212223242526方法分析优点:直观,容易理解,容易实现缺点:1.该方法要求运行结束时对运行中产生的打印分析才能知道结果。2.该方法要求封装所有申请和释放空间的函数,并在调用的地方修改成调用封装后的函数。虽然C中申请/释放内存接口并不多,但是对于一个大型的项目,调用这些接口的地方却是很多的,要全部替换是一个比较大的工作量。3.只对C语言适用,不能应用于C++4.对于所调用的库不适用。如果希望应用于库,则要修改库代码5.只能检测是否泄漏,却没有具体信息,比如泄漏了多少空间6.不能说明是哪一行代码引起了泄漏改进这种方法虽然简单的,却有许多的不足,无法真正应用于项目中。欲知怎样改进,且看下回分解。
Windows 下有哪些内存泄露监测工具
1. ccmalloc-Linux和Solaris下对C和C++程序的简单的使用内存泄漏和malloc调试库。
2. Dmalloc-Debug Malloc Library.
3. Electric Fence-Linux分发版中由Bruce Perens编写的malloc()调试库。
4. Leaky-Linux下检测内存泄漏的程序。
5. LeakTracer-Linux、Solaris和HP-UX下跟踪和分析C++程序中的内存泄漏。
6. MEMWATCH-由Johan Lindh编写,是一个开放源代码C语言内存错误检测工具,主要是通过gcc的precessor来进行。
7. Valgrind-Debugging and profiling Linux programs, aiming at programs written in C and C++.
8. KCachegrind-A visualization tool for the profiling data generated by Cachegrindand Calltree.
9. Leak Monitor-一个Firefox扩展,能找出跟Firefox相关的泄漏类型。
10. IE Leak Detector (Drip/IE Sieve)-Drip和IE Sieve leak detectors帮助网页开发员提升动态网页性能通过报告可避免的因为IE局限的内存泄漏。
11. Windows Leaks Detector-探测任何Win32应用程序中的任何资源泄漏(内存,句柄等),基于Win API调用钩子。
12. SAP Memory Analyzer-是一款开源的JAVA内存分析软件,可用于辅助查找JAVA程序的内存泄漏,能容易找到大块内存并验证谁在一直占用它,它是基于Eclipse RCP(Rich Client Platform),可以下载RCP的独立版本或者Eclipse的插件。
13. DTrace-即动态跟踪Dynamic Tracing,是一款开源软件,能在Unix类似平台运行,用户能够动态检测操作系统内核和用户进程,以更精确地掌握系统的资源使用状况,提高系统性能,减少支持成本,并进行有效的调节。
14. IBM Rational PurifyPlus-帮助开发人员查明C/C++、托管.NET、Java和VB6代码中的性能和可靠性错误。PurifyPlus 将内存错误和泄漏检测、应用程序性能描述、代码覆盖分析等功能组合在一个单一、完整的工具包中。
15. Parasoft Insure++-针对C/C++应用的运行时错误自动检测工具,它能够自动监测C/C++程序,发现其中存在着的内存破坏、内存泄漏、指针错误和I/O等错误。并通过使用一系列独特的技术(SCI技术和变异测试等),彻底的检查和测试我们的代码,精确定位错误的准确位置并给出详细的诊断信息。能作为Microsoft Visual C++的一个插件运行。
16. Compuware DevPartner for Visual C++ BoundsChecker Suite-为C++开发者设计的运行错误检测和调试工具软件。作为Microsoft Visual Studio和C++ 6.0的一个插件运行。
17. Electric Software GlowCode-包括内存泄漏检查,code profiler,函数调用跟踪等功能。给C++和.Net开发者提供完整的错误诊断,和运行时性能分析工具包。
18. Compuware DevPartner Java Edition-包含Java内存检测,代码覆盖率测试,代码性能测试,线程死锁,分布式应用等几大功能模块。
19. Quest JProbe-分析Java的内存泄漏。
20. ej-technologies JProfiler-一个全功能的Java剖析工具,专用于分析J2SE和J2EE应用程序。它把CPU、执行绪和内存的剖析组合在一个强大的应用中。JProfiler可提供许多IDE整合和应用服务器整合用途。JProfiler直觉式的GUI让你可以找到效能瓶颈、抓出内存泄漏、并解决执行绪的问题。4.3.2注册码:A-G666#76114F-1olm9mv1i5uuly#0126
21. BEA JRockit-用来诊断Java内存泄漏并指出根本原因,专门针对Intel平台并得到优化,能在Intel硬件上获得最高的性能。
22. SciTech Software AB .NET Memory Profiler-找到内存泄漏并优化内存使用针对C#,VB.Net,或其它.Net程序。
23. YourKit .NET & Java Profiler-业界领先的Java和.NET程序性能分析工具。
24. AutomatedQA AQTime-AutomatedQA的获奖产品performance profiling和memory debugging工具集的下一代替换产品,支持Microsoft, Borland, Intel, Compaq 和 GNU编译器。可以为.NET和Windows程序生成全面细致的报告,从而帮助您轻松隔离并排除代码中含有的性能问题和内存/资源泄露问题。支持.Net 1.0,1.1,2.0,3.0和Windows 32/64位应用程序。
25. JavaScript Memory Leak Detector-微软全球产品开发欧洲团队(Global Product Development- Europe team, GPDE) 发布的一款调试工具,用来探测JavaScript代码中的内存泄漏,运行为IE系列的一个插件。
vs2010内存泄露检测工具哪个好
(
这里
,和
这里
)
,
VS
本身即具有内存泄露检测机制,只需做如下设置,在
debug
模式下以
F5
运行:
方法一:
//
在入口函数
cpp
中添加以下定义和头文件
#define CRTDBG_MAP_ALLOC
#include
#include
在入口函数中包含
_CrtDumpMemoryLeaks();
即可检测到内存泄露
以如下测试函数为例:
int main()
{
char* pChars = new char[10];
_CrtDumpMemoryLeaks();
return 0;
}
F5
运行输出窗口会得到:
Detected memory leaks!
Dumping objects ->
{126} normal block at 0x002A4630, 10 bytes long.
Data: <
> CD CD CD CD CD CD CD CD CD CD
Object dump complete.
注意:
1.
在
VS2010
下测试的时候,发现
_CrtDumpMemoryLeaks();
这句必须放在
函数结束处
,放
在主函数入口处输出窗口不会输出内存泄露信息
2.{}
中的数字指明这块内存是程序中总计第几个被申请的,这种方法没有行号和其他信息输
出。我们可以定义:
#ifdef _DEBUG
#define new
new(_NORMAL_BLOCK, __FILE__, __LINE__)
#endif
输出:
Detected memory leaks!
Dumping objects -
Windows 下有哪些内存泄露监测工具
您好,很高兴为您解答。怎样检测内存泄露 :检测内存泄漏的关键是要能截获住对分配内存和释放内存的函数的调用。截获住这两个函数,我们就能跟踪每一块内存的生命周期,比如,每当成功的分配一块内存后,就把它的指针加入一个全局的list中;每当释放一块内存,再把它的指针从list中删除。这样,当程序结束的时候,list中剩余的指针就是指向那些没有被释放的内存。这里只是简单的描述了检测内存泄漏的基本原理,详细的算法可以参见Steve Maguire的>。 如果要检测堆内存的泄漏,那么需要截获住malloc/realloc/free和new/delete就可以了(其实new/delete最终也是用malloc/free的,所以只要截获前面一组即可)。对于其他的泄漏,可以采用类似的方法,截获住相应的分配和释放函数。比如,要检测BSTR的泄漏,就需要截获SysAllocString/SysFreeString;要检测HMENU的泄漏,就需要截获CreateMenu/ DestroyMenu。(有的资源的分配函数有多个,释放函数只有一个,比如,SysAllocStringLen也可以用来分配BSTR,这时就需要截获多个分配函数) 在Windows平台下,检测内存泄漏的工具常用的一般有三种,MS C-Runtime Library内建的检测功能;外挂式的检测工具,诸如,Purify,BoundsChecker等;利用Windows NT自带的Performance Monitor。这三种工具各有优缺点,MS C-Runtime Library虽然功能上较之外挂式的工具要弱,但是它是免费的;Performance Monitor虽然无法标示出发生问题的代码,但是它能检测出隐式的内存泄漏的存在,这是其他两类工具无能为力的地方。
有没有基于ARM/linux下面的检测内存泄漏的工具可用
工具
描述
valgrind 一个强大开源的程序检测工具
mtrace GNU扩展,用来跟踪malloc,mtrace为内存分配函数(malloc,rellaoc,memalign,free)安装hook函数
dmalloc 用于检查C/C++内存泄漏的工具,即是检查是否存在程序运行结束还没有释放的内存,以一个运行库发布
memwatch 和dmalloc一样,它能检测未释放的内存、同一段内存被释放多次、位址存取错误及不当使用未分配之内存区域
mpatrol 一个跨平台的 C++ 内存泄漏检测器
dbgmem 也是一个动态库发布的形式,优点类似dmalloc,但是相比之下,可能特点少了一些
Electric Fence 不仅仅能够跟踪malloc()和free(),同时能够检查读访问以及写入,能够准确指出导致错误的指令
如何检查内存泄露问题
我在实现过程中,也有点拿不稳,特别是用队列或栈来存储树的结点(也是指针)时,为了确保没问题,特别是内存的分配,我搜索并安装了Virtual Leak Detector,一个开源的内存泄漏检测工具。
初识Visual Leak Detector
灵活自由是C/C++语言的一大特色,而这也为C/C++程 序员出了一个难题。当程序越来越复杂时,内存的管理也会变得越加复杂,稍有不慎就会出现内存问题。内存泄漏是最常见的内存问题之一。内存泄漏如果不是很严 重,在短时间内对程序不会有太大的影响,这也使得内存泄漏问题有很强的隐蔽性,不容易被发现。然而不管内存泄漏多么轻微,当程序长时间运行时,其破坏力是 惊人的,从性能下降到内存耗尽,甚至会影响到其他程序的正常运行。另外内存问题的一个共同特点是,内存问题本身并不会有很明显的现象,当有异常现象出现时 已时过境迁,其现场已非出现问题时的现场了,这给调试内存问题带来了很大的难度。
Visual Leak Detector是一款用于Visual C++的免费的内存泄露检测工具。可以在http://www.codeproject.com/tools/visualleakdetector.asp 下载到。相比较其它的内存泄露检测工具,它在检测到内存泄漏的同时,还具有如下特点:
1、 可以得到内存泄漏点的调用堆栈,如果可以的话,还可以得到其所在文件及行号;
2、 可以得到泄露内存的完整数据;
3、 可以设置内存泄露报告的级别;
4、 它是一个已经打包的lib,使用时无须编译它的源代码。而对于使用者自己的代码,也只需要做很小的改动;
5、 他的源代码使用GNU许可发布,并有详尽的文档及注释。对于想深入了解堆内存管理的读者,是一个不错的选择。
可见,从使用角度来讲,Visual Leak Detector简单易用,对于使用者自己的代码,唯一的修改是#include Visual Leak Detector的头文件后正常运行自己的程序,就可以发现内存问题。从研究的角度来讲,如果深入Visual Leak Detector源代码,可以学习到堆内存分配与释放的原理、内存泄漏检测的原理及内存操作的常用技巧等。
本文首先将介绍Visual Leak Detector的使用方法与步骤,然后再和读者一起初步的研究Visual Leak Detector的源代码,去了解Visual Leak Detector的工作原理。
使用Visual Leak Detector(1.0)
下面让我们来介绍如何使用这个小巧的工具。
首先从网站上下载zip包,解压之后得到vld.h, vldapi.h, vld.lib, vldmt.lib, vldmtdll.lib, dbghelp.dll等文件。将.h文件拷贝到Visual C++的默认include目录下,将.lib文件拷贝到Visual C++的默认lib目录下,便安装完成了。因为版本问题,如果使用windows 2000或者以前的版本,需要将dbghelp.dll拷贝到你的程序的运行目录下,或其他可以引用到的目录。
注:我下载的是较新版1.9,直接安装到系统中。因此使用时必须先在VC中设置一下目录。
接下来需要将其加入到自己的代码中。方法很简单,只要在包含入口函数的.cpp文件中包含vld.h就可以。如果这个cpp文件包含了stdafx.h,则将包含vld.h的语句放在stdafx.h的包含语句之后,否则放在最前面。如下是一个示例程序:
#include
void main()
{
…
}
接下来让我们来演示如何使用Visual Leak Detector检测内存泄漏。下面是一个简单的程序,用new分配了一个int大小的堆内存,并没有释放。其申请的内存地址用printf输出到屏幕上。
编译运行后,在标准输出窗口得到:
p=003a89c0
在Visual C++的Output窗口得到:
WARNING: Visual Leak Detector detected memory leaks!
---------- Block 57 at 0x003A89C0: 4 bytes ---------- --57号块0x003A89C0地址泄漏了4个字节
Call Stack: --下面是调用堆栈
d:/test/testvldconsole/testvldconsole/main.cpp (7): f --表示在main.cpp第7行的f()函数
d:/test/testvldconsole/testvldconsole/main.cpp (14): main –双击以引导至对应代码处
f:/rtm/vctools/crt_bld/self_x86/crt/src/crtexe.c (586): __tmainCRTStartup
f:/rtm/vctools/crt_bld/self_x86/crt/src/crtexe.c (403): mainCRTStartup
0x7C816D4F (File and line number not available): RegisterWaitForInputIdle
Data: --这是泄漏内存的内容,0x12345678
78 56 34 12 xV4..... ........
Visual Leak Detector detected 1 memory leak.
第二行表示57号块有4字节的内存泄漏,地址为0x003A89C0,根据程序控制台的输出,可以知道,该地址为指针p。程序的第7行,f()函数里,在该地址处分配了4字节的堆内存空间,并赋值为0x12345678,这样在报告中,我们看到了这4字节同样的内容。
可以看出,对于每一个内存泄漏,这个报告列出了它的泄漏点、长度、分配该内存时的调用堆栈、和泄露内存的内容(分别以16进制和文本格式列出)。双击该堆栈报告的某一行,会自动在代码编辑器中跳到其所指文件的对应行。这些信息对于我们查找内存泄露将有很大的帮助。
这是一个很方便易用的工具,安装后每次使用时,仅仅需要将它头文件包含进来重新build就可以。而且,该工具仅在build Debug版的时候会连接到你的程序中,如果build Release版,该工具不会对你的程序产生任何性能等方面影响。所以尽可以将其头文件一直包含在你的源代码中。
Visual Leak Detector工作原理
下面让我们来看一下该工具的工作原理。
在这之前,我们先来看一下Visual C++内置的内存泄漏检测工具是如何工作的。Visual C++内置的工具CRT Debug Heap工作原来很简单。在使用Debug版的malloc分配内存时,malloc会在内存块的头中记录分配该内存的文件名及行号。当程序退出时CRT会在main()函数返回之后做一些清理工作,这个时候来检查调试堆内存,如果仍然有内存没有被释放,则一定是存在内存泄漏。从这些没有被释放的内存块的头中,就可以获得文件名及行号。
这种静态的方法可以检测出内存泄漏及其泄漏点的文件名和行号,但是并不知道泄漏究竟是如何发生的,并不知道该内存分配语句是如何被执行到的。要想了解这些,就必须要对程序的内存分配过程进行动态跟踪。Visual Leak Detector就是这样做的。它在每次内存分配时将其上下文记录下来,当程序退出时,对于检测到的内存泄漏,查找其记录下来的上下文信息,并将其转换成报告输出。
初始化
Visual Leak Detector要记录每一次的内存分配,而它是如何监视内存分配的呢?Windows提供了分配钩子(allocation hooks)来监视调试堆内存的分配。它是一个用户定义的回调函数,在每次从调试堆分配内存之前被调用。在初始化时,Visual Leak Detector使用_CrtSetAllocHook注册这个钩子函数,这样就可以监视从此之后所有的堆内存分配了。
如何保证在Visual Leak Detector初始化之前没有堆内存分配呢?全局变量是在程序启动时就初始化的,如果将Visual Leak Detector作为一个全局变量,就可以随程序一起启动。但是C/C++并没有约定全局变量之间的初始化顺序,如果其它全局变量的构造函数中有堆内存分配,则可能无法检测到。Visual Leak Detector使用了C/C++提供的#pragma init_seg来在某种程度上减少其它全局变量在其之前初始化的概率。根据#pragma init_seg的定义,全局变量的初始化分三个阶段:首先是compiler段,一般c语言的运行时库在这个时候初始化;然后是lib段,一般用于第三方的类库的初始化等;最后是user段,大部分的初始化都在这个阶段进行。Visual Leak Detector将其初始化设置在compiler段,从而使得它在绝大多数全局变量和几乎所有的用户定义的全局变量之前初始化。
记录内存分配
一个分配钩子函数需要具有如下的形式:
int YourAllocHook( int allocType, void *userData, size_t size, int blockType, long requestNumber, const unsignedchar *filename, int lineNumber);
就像前面说的,它在Visual Leak Detector初始化时被注册,每次从调试堆分配内存之前被调用。这个函数需要处理的事情是记录下此时的调用堆栈和此次堆内存分配的唯一标识——requestNumber。
得到当前的堆栈的二进制表示并不是一件很复杂的事情,但是因为不同体系结构、不同编译器、不同的函数调用约定所产生的堆栈内容略有不同,要解释堆栈并得到整个函数调用过程略显复杂。不过windows提供一个StackWalk64函数,可以获得堆栈的内容。StackWalk64的声明如下:
BOOL StackWalk64(
DWORD MachineType,
HANDLE hProcess,
HANDLE hThread,
LPSTACKFRAME64 StackFrame,
PVOID ContextRecord,
PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress
);
STACKFRAME64结构表示了堆栈中的一个frame。给出初始的STACKFRAME64,反复调用该函数,便可以得到内存分配点的调用堆栈了。
// Walk the stack.
while (count < _VLD_maxtraceframes) {
count++;
if (!pStackWalk64(architecture, m_process, m_thread, &frame, &context,
NULL, pSymFunctionTableAccess64, pSymGetModuleBase64, NULL)) {
// Couldn't trace back through any more frames.
break;
}
if (frame.AddrFrame.Offset == 0) {
// End of stack.
break;
}
// Push this frame's program counter onto the provided CallStack.
callstack->push_back((DWORD_PTR)frame.AddrPC.Offset);
}
那么,如何得到初始的STACKFRAME64结构呢?在STACKFRAME64结构中,其他的信息都比较容易获得,而当前的程序计数器(EIP)在x86体系结构中无法通过软件的方法直接读取。Visual Leak Detector使用了一种方法来获得当前的程序计数器。首先,它调用一个函数,则这个函数的返回地址就是当前的程序计数器,而函数的返回地址可以很容易的从堆栈中拿到。下面是Visual Leak Detector获得当前程序计数器的程序:
#if defined(_M_IX86) || defined(_M_X64)
#pragma auto_inline(off)
DWORD_PTR VisualLeakDetector::getprogramcounterx86x64 ()
{
DWORD_PTR programcounter;
__asm mov AXREG, [BPREG + SIZEOFPTR] // Get the return address out of the current stack frame
__asm mov [programcounter], AXREG // Put the return address into the variable we'll return
return programcounter;
}
#pragma auto_inline(on)
#endif // defined(_M_IX86) || defined(_M_X64)
得到了调用堆栈,自然要记录下来。Visual Leak Detector使用一个类似map的数据结构来记录该信息。这样可以方便的从requestNumber查找到其调用堆栈。分配钩子函数的allocType参数表示此次堆内存分配的类型,包括_HOOK_ALLOC, _HOOK_REALLOC, 和 _HOOK_FREE,下面代码是Visual Leak Detector对各种情况的处理。
switch (type) {
case _HOOK_ALLOC:
visualleakdetector.hookmalloc(request);
break;
case _HOOK_FREE:
visualleakdetector.hookfree(pdata);
break;
case _HOOK_REALLOC:
visualleakdetector.hookrealloc(pdata, request);
break;
default:
visualleakdetector.report("WARNING: Visual Leak Detector: in allochook(): Unhandled allocation type (%d)./n", type);
break;
}
这里,hookmalloc()函数得到当前堆栈,并将当前堆栈与requestNumber加入到类似map的数据结构中。hookfree()函数从类似map的数据结构中删除该信息。hookrealloc()函数依次调用了hookfree()和hookmalloc()。
检测内存泄露
前面提到了Visual C++内置的内存泄漏检测工具的工作原理。与该原理相同,因为全局变量以构造的相反顺序析构,在Visual Leak Detector析构时,几乎所有的其他变量都已经析构,此时如果仍然有未释放之堆内存,则必为内存泄漏。
分配的堆内存是通过一个链表来组织的,检查内存泄漏则是检查此链表。但是windows没有提供方法来访问这个链表。Visual Leak Detector使用了一个小技巧来得到它。首先在堆上申请一块临时内存,则该内存的地址可以转换成指向一个_CrtMemBlockHeader结构,在此结构中就可以获得这个链表。代码如下:
char *pheap = new char;
_CrtMemBlockHeader *pheader = pHdr(pheap)->pBlockHeaderNext;
delete pheap;
其中pheader则为链表首指针。
报告生成
前面讲了Visual Leak Detector如何检测、记录内存泄漏及其其调用堆栈。但是如果要这个信息对程序员有用的话,必须转换成可读的形式。Visual Leak Detector使用SymGetLineFromAddr64()及SymFromAddr()生成可读的报告。
// Iterate through each frame in the call stack.
for (frame = 0; frame size(); frame++) {
// Try to get the source file and line number associated with
// this program counter address.
if (pSymGetLineFromAddr64(m_process,
(*callstack)[frame], &displacement, &sourceinfo)) {
...
}
// Try to get the name of the function containing this program
// counter address.
if (pSymFromAddr(m_process, (*callstack)[frame],
&displacement64, pfunctioninfo)) {
functionname = pfunctioninfo->Name;
}
else {
functionname = "(Function name unavailable)";
}
...
}
概括讲来,Visual Leak Detector的工作分为3步,首先在初始化注册一个钩子函数;然后在内存分配时该钩子函数被调用以记录下当时的现场;最后检查堆内存分配链表以确定是否存在内存泄漏并将泄漏内存的现场转换成可读的形式输出。有兴趣的读者可以阅读Visual Leak Detector的源代码。
总结
在使用上,Visual Leak Detector简单方便,结果报告一目了然。在原理上,Visual Leak Detector针 对内存泄漏问题的特点,可谓对症下药——内存泄漏不是不容易发现吗?那就每次内存分配是都给记录下来,程序退出时算总账;内存泄漏现象出现时不是已时过境 迁,并非当时泄漏点的现场了吗?那就把现场也记录下来,清清楚楚的告诉使用者那块泄漏的内存就是在如何一个调用过程中泄漏掉的。
Visual Leak Detector是一个简单易用内存泄漏检测工具。现在最新的版本是1.9a,采用了新的检测机制,并在功能上有了很多改进。不妨体验一下
如何检测内存泄漏
内存泄漏指由于疏忽或错误造成程序未能释放已经不再使用的内存的情况。内存泄漏并非指内存在物理上的消失,而是应用程序分配某段内存后,由于设计错误,失去了对该段内存的控制,因而造成了内存的浪费。
可以使用相应的软件测试工具对软件进行检测。
1. ccmalloc-Linux和Solaris下对C和C++程序的简单的使用内存泄漏和malloc调试库。
2. Dmalloc-Debug Malloc Library.
3. Electric
Fence-Linux分发版中由Bruce Perens编写的malloc()调试库。
4. Leaky-Linux下检测内存泄漏的程序。
5. LeakTracer-Linux、Solaris和HP-UX下跟踪和分析C++程序中的内存泄漏。
6. MEMWATCH-由Johan
Lindh编写,是一个开放源代码C语言内存错误检测工具,主要是通过gcc的precessor来进行。
7. Valgrind-Debugging and profiling Linux programs, aiming at
programs written in C and C++.
8. KCachegrind-A visualization tool for the profiling data
generated by Cachegrind and Calltree.
9. Leak
Monitor-一个Firefox扩展,能找出跟Firefox相关的泄漏类型。
10. IE Leak Detector
(Drip/IE Sieve)-Drip和IE Sieve leak
detectors帮助网页开发员提升动态网页性能通过报告可避免的因为IE局限的内存泄漏。
11. Windows Leaks
Detector-探测任何Win32应用程序中的任何资源泄漏(内存,句柄等),基于Win API调用钩子。
12. SAP Memory
Analyzer-是一款开源的JAVA内存分析软件,可用于辅助查找JAVA程序的内存泄漏,能容易找到大块内存并验证谁在一直占用它,它是基于Eclipse
RCP(Rich Client Platform),可以下载RCP的独立版本或者Eclipse的插件。
13. DTrace-即动态跟踪Dynamic
Tracing,是一款开源软件,能在Unix类似平台运行,用户能够动态检测操作系统内核和用户进程,以更精确地掌握系统的资源使用状况,提高系统性能,减少支持成本,并进行有效的调节。
14. IBM Rational PurifyPlus-帮助开发人员查明C/C++、托管.NET、Java和VB6代码中的性能和可靠性错误。PurifyPlus
将内存错误和泄漏检测、应用程序性能描述、代码覆盖分析等功能组合在一个单一、完整的工具包中。
15. Parasoft Insure++-针对C/C++应用的运行时错误自动检测工具,它能够自动监测C/C++程序,发现其中存在着的内存破坏、内存泄漏、指针错误和I/O等错误。并通过使用一系列独特的技术(SCI技术和变异测试等),彻底的检查和测试我们的代码,精确定位错误的准确位置并给出详细的诊断信息。能作为Microsoft
Visual C++的一个插件运行。
16. Compuware DevPartner for Visual C++ BoundsChecker
Suite-为C++开发者设计的运行错误检测和调试工具软件。作为Microsoft Visual Studio和C++ 6.0的一个插件运行。
17. Electric Software GlowCode-包括内存泄漏检查,code
profiler,函数调用跟踪等功能。给C++和.Net开发者提供完整的错误诊断,和运行时性能分析工具包。
18. Compuware DevPartner Java
Edition-包含Java内存检测,代码覆盖率测试,代码性能测试,线程死锁,分布式应用等几大功能模块。
19. Quest JProbe-分析Java的内存泄漏。
20. ej-technologies JProfiler-一个全功能的Java剖析工具,专用于分析J2SE和J2EE应用程序。它把CPU、执行绪和内存的剖析组合在一个强大的应用中。JProfiler可提供许多IDE整合和应用服务器整合用途。JProfiler直觉式的GUI让你可以找到效能瓶颈、抓出内存泄漏、并解决执行绪的问题。4.3.2注册码:A-G666#76114F-1olm9mv1i5uuly#0126
21. BEA JRockit-用来诊断Java内存泄漏并指出根本原因,专门针对Intel平台并得到优化,能在Intel硬件上获得最高的性能。
22. SciTech Software AB .NET Memory
Profiler-找到内存泄漏并优化内存使用针对C#,VB.Net,或其它.Net程序。
23. YourKit .NET & Java Profiler-业界领先的Java和.NET程序性能分析工具。
24. AutomatedQA AQTime-AutomatedQA的获奖产品performance profiling和memory
debugging工具集的下一代替换产品,支持Microsoft, Borland, Intel, Compaq 和
GNU编译器。可以为.NET和Windows程序生成全面细致的报告,从而帮助您轻松隔离并排除代码中含有的性能问题和内存/资源泄露问题。支持.Net
1.0,1.1,2.0,3.0和Windows 32/64位应用程序。
25. JavaScript Memory Leak Detector-微软全球产品开发欧洲团队(Global Product
Development- Europe team, GPDE)
发布的一款调试工具,用来探测JavaScript代码中的内存泄漏,运行为IE系列的一个插件。
电脑内存泄漏怎么解决
所谓的内存泄漏可以理解为内存单元逐渐被无用的数据占用,在c c++里可以通过内存单元没有释放引起,java里可以通过未对作废数据内存单元的引用置null引起分配了内存而没有释放,逐渐耗尽内存资源,导致系统崩溃。内存泄露是指程序中间动态分配了内存,但是在程序结束时没有释放这部分内存,从而造成那一部分内存不可用的情况,重起计算机可以解决,但是也有可能再次发生内存泄露,内存泄露和硬件没有关系,它是由软件设计缺陷引起的。内存泄漏可以分为4类:1. 常发性内存泄漏。发生内存泄漏的代码会被多次执行到,每次被执行的时候都会导致一块内存泄漏。2. 偶发性内存泄漏。发生内存泄漏的代码只有在某些特定环境或操作过程下才会发生。常发性和偶发性是相对的。对于特定的环境,偶发性的也许就变成了常发性的。所以测试环境和测试方法对检测内存泄漏至关重要。3. 一次性内存泄漏。发生内存泄漏的代码只会被执行一次,或者由于算法上的缺陷,导致总会有一块仅且一块内存发生泄漏。比如,在类的构造函数中分配内存,在析构函数中却没有释放该内存,所以内存泄漏只会发生一次。4. 隐式内存泄漏。程序在运行过程中不停的分配内存,但是直到结束的时候才释放内存。严格的说这里并没有发生内存泄漏,因为最终程序释放了所有申请的内存。但是对于一个服务器程序,需要运行几天,几周甚至几个月,不及时释放内存也可能导致最终耗尽系统的所有内存。所以,我们称这类内存泄漏为隐式内存泄漏。