超导体的应用

时间:2024-07-25 23:36:54编辑:分享君

超导体有什么作用

在一定温度下具有超导电性的物体称为超导体
下面简单介绍超导体的一些应用。
(1)用超导材料输电发电站通过漫长的输电线向用户送电。由于电线存在电阻,使电流通过输电线时电能被消耗一部分,如果用超导材料做成超导电缆用于输电,那么在输电线路上的损耗将降为零。
(2)超导发电机制造大容量发电机,关键部件是线圈和磁体。由于导线存在电阻,造成线圈严重发热,如何使线圈冷却成为难题。如果用超导材料制造超导发电机,线圈是由无电阻的超导材料绕制的,根本不会发热,冷却难题迎刃而解,而且功率损失可减少50%。
(3)磁力悬浮高速列车要使列车速度达到500km•h-1,普通列车是绝对办不到的。如果把超导磁体装在列车内,在地面轨道上敷设铝环,利用它们之间发生相对运动,使铝环中产生感应电流,从而产生磁排斥作用,把列车托起离地面约10cm,使列车能悬浮在地面上而高速前进。
可控热核聚变核聚变时能释放出大量的能量。为了使核聚变反应持续不断,必须在108℃下将等离子约束起来,这就需要一个强大的磁场,而超导磁体能产生约束等离子所需要的磁场。人类只有掌握了超导技术,才有可能把可控热核聚变变为现实,为人类提供无穷的能源。


超导体有哪些用途

超导体
开放分类: 科学、自然、物理学、超导体

1911年,荷兰科学家昂内斯(Ones)用液氦冷却汞,当温度下降到4.2K时,水银的电阻完全消失,这种现象称为超导电性,此温度称为临界温度。根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。但这里所说的「高温」,其实仍然是远低于冰点摄氏0℃的,对一般人来说算是极低的温度。1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。经过科学家们的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料。

1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K,这一记录保持了近13年。

1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧钡铜氧化物)具有35K的高温超导性。此后,科学家们几乎每隔几天,就有新的研究成果出现。

1986年,美国贝尔实验室研究的超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。

1987年,美国华裔科学家朱经武以及中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的“温度壁垒”(77K)也被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度提高了近100K。

来自德国、法国和俄罗斯的科学家利用中子散射技术,在高温超导体的一个成员单铜氧层Tl2Ba2CuO6+δ中观察到了所谓的磁共振模式,进一步证实了这种模式在高温超导体中存在的一般性。该发现有助于对铜氧化物超导体机制的研究。

高温超导体具有更高的超导转变温度(通常高于氮气液化的温度),有利于超导现象在工业界的广泛利用。高温超导体的发现迄今已有16年,而对其不同于常规超导体的许多特点及其微观机制的研究,却仍处于相当“初级”的阶段。这一点不仅反映在没有一个单一的理论能够完全描述和解释高温超导体的特性,更反映在缺乏统一的、在各个不同体系上普遍存在的“本征”实验现象。本期Science所报道的结果意味着中子散射领域里一个长期存在的困惑很有可能得到解决。

早在1991年,法国物理学家利用中子散射技术在双铜氧层YBa2Cu3O6+δ超导体单晶中发现了一个微弱的磁性信号。随后的实验证明,这种信号仅在超导体处于超导状态时才显著增强并被称为磁共振模式。这个发现表明电子的自旋以某种合作的方式产生一种集体的有序运动,而这是常规超导体所不具有的。这种集体运动有可能参与了电子的配对,并对超导机制负责,其作用类似于常规超导体内引起电子配对的晶格振动。但是,在另一个超导体La2-xSrxCuO4+δ(单铜氧层)中,却无法观察到同样的现象。这使物理学家怀疑这种磁共振模式并非铜氧化物超导体的普遍现象。1999年,在Bi2Sr2CaCu2O8+δ单晶上也观察到了这种磁共振信号。但由于Bi2Sr2CaCu2O8+δ与YBa2Cu3O6+δ一样,也具有双铜氧层结构,关于磁共振模式是双铜氧层的特殊表征还是“普遍”现象的困惑并未得到彻底解决。

理想的候选者应该是典型的高温超导晶体,结构尽可能简单,只具有单铜氧层。困难在于,由于中子与物质的相互作用很弱,只有足够大的晶体才可能进行中子散射实验。随着中子散射技术的成熟,对晶体尺寸的要求已降低到0.1厘米3的量级。晶体生长技术的进步,也使Tl2Ba2CuO6+δ单晶体的尺寸进入毫米量级,而它正是一个理想的候选者。科学家把300个毫米量级的Tl2Ba2CuO6+δ单晶以同一标准按晶体学取向排列在一起,构成一个“人造”单晶,“提前”达到了中子散射的要求。经过近两个月散射谱的搜集与反复验证,终于以确凿的实验数据显示在这样一个近乎理想的高温超导单晶上也存在磁共振模式。这一结果说明磁共振模式是高温超导的一个普遍现象。而La2-xSrxCuO4+δ体系上磁共振模式的缺席只是“普遍”现象的例外,这可能与其结构的特殊性有关。

关于磁共振模式及其与电子间相互作用的理论和实验研究一直是高温超导领域的热点之一,上述结果将引起许多物理学家的关注与兴趣。

20世纪80年代是超导电性的探索与研究的黄金年代。1981年合成了有机超导体,1986年缪勒和柏诺兹发现了一种成分为钡、镧、铜、氧的陶瓷性金属氧化物LaBaCuO4,其临界温度约为35K。由于陶瓷性金属氧化物通常是绝缘物质,因此这个发现的意义非常重大,缪勒和柏诺兹因此而荣获了1987年度诺贝尔物理学奖。

1987年在超导材料的探索中又有新的突破,美国休斯顿大学物理学家朱经武小组与中国科学院物理研究所赵忠贤等人先后研制成临界温度约为90K的超导材料YBCO(钇铋铜氧)。

1988年初日本研制成临界温度达110K的Bi-Sr-Ca-Cu-O超导体。至此,人类终于实现了液氮温区超导体的梦想,实现了科学史上的重大突破。这类超导体由于其临界温度在液氮温度(77K)以上,因此被称为高温超导体。

自从高温超导材料发现以后,一阵超导热席卷了全球。科学家还发现铊系化合物超导材料的临界温度可达125K,汞系化合物超导材料的临界温度则高达135K。如果将汞置于高压条件下,其临界温度将能达到难以置信的164K。

1997年,研究人员发现,金铟合金在接近绝对零度时既是超导体同时也是磁体。1999年科学家发现钌铜化合物在45K时具有超导电性。由于该化合物独特的晶体结构,它在计算机数据存储中的应用潜力将是非常巨大的。
自2007年12月开始,中国科学院物理研究所的陈根富博士已投入到镧氧铁砷非掺杂单晶体的制备中。今年2月18日,日本东京工业大学的细野秀雄教授和他的合作者在《美国化学会志》上发表了一篇两页的文章,指出氟掺杂镧氧铁砷化合物在零下247.15摄氏度时即具有超导电性。在长期研究中保持着跨界关注习惯的陈根富和王楠林研究员立即捕捉到了这一消息的价值,王楠林小组迅速转向制作掺杂样品,他们在一周内实现了超导并测量了基本物理性质。
几乎与此同时,物理所闻海虎研究组通过在镧氧铁砷材料中用二价金属锶替换三价的镧,发现有临界温度为零下248.15摄氏度以上的超导电性。
3月25日和3月26日,中国科学技术大学陈仙辉组和物理所王楠林组分别独立发现临界温度超过零下233.15摄氏度的超导体,突破麦克米兰极限,证实为非传统超导。
3月29日,中国科学院院士、物理所研究员赵忠贤领导的小组通过氟掺杂的镨氧铁砷化合物的超导临界温度可达零下221.15摄氏度,4月初该小组又发现无氟缺氧钐氧铁砷化合物在压力环境下合成超导临界温度可进一步提升至零下218.15摄氏度。

为了证实(超导体)电阻为零,科学家将一个铅制的圆环,放入温度低于Tc=7.2K的空间,利用电磁感应使环内激发起感应电流。结果发现,环内电流能持续下去,从1954年3月16日始,到1956年9月5日止,在两年半的时间内的电流一直没有衰减,这说明圆环内的电能没有损失,当温度升到高于Tc时,圆环由超导状态变正常态,材料的电阻骤然增大,感应电流立刻消失,这就是著名的昂尼斯持久电流实验。

1.超导技术谈
1911年,荷兰莱顿大学的卡茂林-昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡茂林-昂尼斯称之为超导态。卡茂林由于他的这一发现获得了1913年诺贝尔奖。
这一发现引起了世界范围内的震动。在他之后,人们开始把处于超导状态的导体称之为“超导体”。超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中流大的电流,从而产生超强磁场。
1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感兴强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。
后来人们还做过这样一个实验:在一个浅平的锡盘中,放入一个体积很小但磁性很强的永久磁体,然后把温度降低,使锡盘出现超导性,这时可以看到,小磁铁竟然离开锡盘表面,慢慢地飘起,悬空不动。
迈斯纳效应有着重要的意义,它可以用来判别物质是否具有超性。
为了使超导材料有实用性,人们开始了探索高温超导的历程,从1911年至1986年,超导温度由水银的4.2K提高到23.22K(OK=-273°C)。86年1月发现钡镧铜氧化物超导温度是30度,12月30日,又将这一纪录刷新为40.2K,87年1月升至43K,不久又升至46K和53K,2月15日发现了98K超导体,很快又发现了14°C下存在超导迹象,高温超导体取得了巨大突破,使超导技术走向大规模应用。
超导材料和超导技术有着广阔的应用前景。超导现象中的迈斯纳效应使人们可以到用此原理制造超导列车和超导船,由于这些交通工具将在无摩擦状态下运行,这将大大提高它们的速度和安静性能。超导列车已于70年代成功地进行了载人可行性试验,1987年开始,日本国开始试运行,但经常出现失效现象,出现这种现象可能是由于高速行驶产生的颠簸造成的。超导船已于1992年1月27日下水试航,目前尚未进入实用化阶段。利用超导材料制造交通工具在技术上还存在一定的障碍,但它势必会引发交通工具革命的一次浪潮。
超导材料的零电阻特性可以用来输电和制造大型磁体。超高压输电会有很大的损耗,而利用超导体则可最大限度地降低损耗,但由于临界温度较高的超导体还未进入实用阶段,从而限制了超导输电的采用。随着技术的发展,新超导材料的不断涌现,超导输电的希望能在不久的将来得以实现。
现有的高温超导体还处于必须用液态氮来冷却的状态,但它仍旧被认为是20世纪最伟大的发现之一。
2.超导技术及其应用
比尔·李
1911年,荷兰科学家昂内斯用液氦冷却水银,当温度下降到4.2K时发现水银的电阻完全消失,这种现象称为超导电性。1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。
超导电性和抗磁性是超导体的两个重要特性。使超导体电阻为零的温度,叫超导临界温度。经过科学家们数十年的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料。
奇异的超导陶瓷
1973年,人们发现了超导合金――铌锗合金,其临界超导温度为23.2K,该记录保持了13年。1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧-钡-铜-氧)具有35K的高温超导性,打破了传统“氧化物陶瓷是绝缘体”的观念,引起世界科学界的轰动。此后,科学家们争分夺秒地攻关,几乎每隔几天,就有新的研究成果出现。
1986年底,美国贝尔实验室研究的氧化物超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。1987年2月,美国华裔科学家朱经武和中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的禁区(77K)也奇迹般地被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度竟然提高了100K以上,这在材料发展史,乃至科技发展史上都堪称是一大奇迹!
高温超导材料的不断问世,为超导材料从实验室走向应用铺平了道路。
超群的超导磁体
超导材料最诱人的应用是发电、输电和储能。
由于超导材料在超导状态下具有零电阻和完全的抗磁性,因此只需消耗极少的电能,就可以获得10万高斯以上的稳态强磁场。而用常规导体做磁体,要产生这么大的磁场,需要消耗3.5兆瓦的电能及大量的冷却水,投资巨大。
超导磁体可用于制作交流超导发电机、磁流体发电机和超导输电线路等。
超导发电机 在电力领域,利用超导线圈磁体可以将发电机的磁场强度提高到5万~6万高斯,并且几乎没有能量损失,这种发电机便是交流超导发电机。超导发电机的单机发电容量比常规发电机提高5~10倍,达1万兆瓦,而体积却减少1/2,整机重量减轻1/3,发电效率提高50%。
磁流体发电机 磁流体发电机同样离不开超导强磁体的帮助。磁流体发电发电,是利用高温导电性气体(等离子体)作导体,并高速通过磁场强度为5万~6万高斯的强磁场而发电。磁流体发电机的结构非常简单,用于磁流体发电的高温导电性气体还可重复利用。
超导输电线路 超导材料还可以用于制作超导电线和超导变压器,从而把电力几乎无损耗地输送给用户。据统计,目前的铜或铝导线输电,约有15%的电能损耗在输电线路上,光是在中国,每年的电力损失即达1000多亿度。若改为超导输电,节省的电能相当于新建数十个大型发电厂。
广阔的超导应用
高温超导材料的用途非常广阔,大致可分为三类:大电流应用(强电应用)、电子学应用(弱电应用)和抗磁性应用。大电流应用即前述的超导发电、输电和储能;电子学应用包括超导计算机、超导天线、超导微波器件等;抗磁性主要应用于磁悬浮列车和热核聚变反应堆等。
超导磁悬浮列车 利用超导材料的抗磁性,将超导材料放在一块永久磁体的上方,由于磁体的磁力线不能穿过超导体,磁体和超导体之间会产生排斥力,使超导体悬浮在磁体上方。利用这种磁悬浮效应可以制作高速超导磁悬浮列车。
超导计算机 高速计算机要求集成电路芯片上的元件和连接线密集排列,但密集排列的电路在工作时会发生大量的热,而散热是超大规模集成电路面临的难题。超导计算机中的超大规模集成电路,其元件间的互连线用接近零电阻和超微发热的超导器件来制作,不存在散热问题,同时计算机的运算速度大大提高。此外,科学家正研究用半导体和超导体来制造晶体管,甚至完全用超导体来制作晶体管。
核聚变反应堆“磁封闭体” 核聚变反应时,内部温度高达1亿~2亿℃,没有任何常规材料可以包容这些物质。而超导体产生的强磁场可以作为“磁封闭体”,将热核反应堆中的超高温等离子体包围、约束起来,然后慢慢释放,从而使受控核聚变能源成为21世纪前景广阔的新能源。

科学家新近创造出一种新的物质形态,并预言它将帮助人类做出下一代超导体,以用于发电和提高火车的工作效率等多种用途。
这种新的物质形态称作“费密冷凝体”,是已知的第六种物质形态。前五种物质形态分别为气体、固体、液体、等离子体和1995年刚刚发明的玻色一爱因斯坦冷凝体。
费密子和玻色子的重大差异,体现在“自旋”这一量子力学特性上。费密子是像电子一样的粒子,有半整数自旋(如1/2,3/2,5/2等);而玻色子是像质子一样的粒子,有整数自旋(如0,1,2等)。这种自旋差异使费密子和玻色子有完全不同的特性。没有任何两个费密子能有同样的量子态:它们没有相同的特性,也不能在同一时间处于同一地点;而玻色子却能够具有相同的特性。因此,1995年物理学家将一定数量铷和钠原子冷却成玻色子时,大部分原子变成了同样的低温量子态,实际上成为单一巨大的整体原子:玻色一爱因斯坦凝聚态。但像钾一40或锂一6这样的费密子,即使在很低的温度下,每种粒子必定也有稍微不同的特性。
2003年,物理学家找到了一个克服以上障碍的方法。他们将费密子成对转变成玻色子,两个半整数自旋组成一个整数自旋,费密子对就起到了玻色子的作用,所有气体突然冷凝至玻色一爱因斯坦凝聚态。奥地利英斯布瑞克大学的科学家将锂一6原子冷却,同时施加稳定磁场,促使费密子结合在一起;美国科罗拉多“实验室天体物理学联合研究所”采用的技术略有不同,他们将钾一40原子冷却后施加磁场,通过磁场变化让每个原子强烈吸引附近的原子,诱发它们形成成对原子,然后凝聚成玻色一爱因斯坦凝聚态。


超导体的应用有哪些?

磁共振成像迅速发展为商品化生产,至今世界上约有700多台磁共振成像仪,产品生产主要集中于美国和德国,美国约占70%,磁体类型中,超导磁体占了全部产品的95%左右。超导磁分离,是根据种种物质磁性和密度的差异进行分选的一种方法。由于磁杯不同的颗粒在磁分离装置的分选空间中受到磁力、机械力不同的作用,将沿不同路径运动,从而可分别接取磁性产品和非磁性产品。超导磁体具有不可比拟的低耗能特点,这些都大大降低了分离装置的运行成本,虽然初始投资略高于常规磁体,但运行成本非常低,预计可降低90%以上。超导贮能与其他贮能技术相比有许多优点,贮能密度大,贮能效率高(90%~95%),释放能时没有效率损失。超导贮能技术有许多重要用途,它在节约电能、提高电网稳定性和调节电力系统尖峰负荷方面有重要作用;它还可作为宇宙站的电源,也可作为受控热核反应、激光武器、粒子束武器和电磁轨道炮等的脉冲电源。将常规发电机的转子以超导线圈替代则形成超导同步发电机。超导发电机与常规发电机相比,具有以下优点:机械与通风损耗少,虽然增加了冷却系统的功率损耗,但整个发电系统的损耗只是常规发电机的一半儿,使超导发电机的效率提高0.5%~0.8%(常规发电机效率98%,超导发电机效率99%)。超导发电机的体积小、重量轻,只有常规发电机的1/3~1/2,同步电抗小,稳定性好。由于省去了铁芯,降低了电枢绕组对地绝缘的要求,因此可采用电枢绕组,省去升压变压器,可直接投入已有电网运行。国际上认为,超导同步发电机是未来电站的主力,并争相开展研制工作。已研制完成的最大容量为前苏联和法国的30万千瓦发电机。美国和日本并不急于开发百万千瓦级的发电机,他们已研制完成的发电机容量分别为3万千瓦和5万千瓦。日本计划研制国内最大的20万千瓦的发电机。发电站的容量随着电力需求的增长而增长,因此,大功率、长距离、低损耗的输电技术对提高输电的经济效益是十分重要的,而超导体具有零电阻的特性,可以输送极大的电流和功率而没有电功率损耗,因此超导输电系统必将带来大的改观。当今世界,提高陆路交通工具的速度对促进国家经济发展和改善人们生活质量是十分重要的。传统的铁路车辆由于车轮和铁轨磨损严重,以及车轮与铁轨的摩擦力,限制了车速。这种机车目前设计速度最高可达274公里/小时,运行平均速度为209公里/小时。在本世纪60年代,法国、英国和美国又生产出有轨的气垫机车,城市间运行速度可达160公里/小时。然而,由于人们对磁悬浮兴趣的增长,现在气垫机车的发展已陷于停顿状态。日本人设计一种电动悬挂系统,该系统使用了由液氦冷却的(-269℃)铌等超导物质做成的超导磁体,在-269℃下它的电阻为零,利用超导磁体的排斥力,从而使轨道与列车之间形成10~15厘米的空隙。一个小型示范性模型列车创造了517公里/小时的世界记录,其试验轨道长6.5公里,使用的超导材料是NbTi,在液氦下冷却到5K。磁悬浮列车与传统列车相比有一系列的优点,克服了传统列车对速度的限制;非接触的运行克服了恶劣气候(如雨、雪或冰)的障碍;采用非接触运行,没有机械磨损,减少了维修成本;由于没有运动部件,大大提高了系统的可靠性;由于只用电能,对于石油供应紧张的国家更有意义;可节省能源,100公里消耗能源只是飞机或汽车的1/4;速度极大提高,增加了运送旅客的能力,具有很大的潜在市场;大幅度地降低了噪声与振动,有利于保护环境。粒子加速器是研究宇宙和物质基本问题的主要设备,美国在加速器的建造方面走在世界最前列。随着超导体技术的发展,在1988年美国国家科学基金会批准了建造至今为止功能最强的粒子加速器——超级超导对撞机(SSC)计划,3年财政预算达32亿美元。计划1999年将超级超导对撞机投入运行。超级超导对撞机相当庞大,在地下铺设了长度为53英里的环形管道。超级超导对撞机将把相向的两个质子束加速到光速的99.9%以上的速度,超导磁体使质子束弯曲和聚焦以通过弯曲的路径,超导磁体要比普通铁磁体产生更强的磁场,使质子束行进的曲率半径更小,这样就使环形管道的尺寸小型化。自1962年发现约瑟夫逊效应后,直流超导量子器件和射频超导量子器件相继于1964年和1967年问世。由超导量子干涉器件构成的测量仪器具有很高的磁场灵敏度、很宽的动态范围和优良的频率响应特性,所以有广泛的用途。利用超导量子干涉器件可以测出由人的心脏和脑产生的极微弱的信号,也可以测出由潜入海洋的潜艇产生的对地球磁场的干扰或含油和矿床的地质层中的磁场分布。从1964年以来,研究工作者已将超导量子干涉器件的极高灵敏度用于进行广泛的科学研究。它可以测量极小的电压、电流和电阻;可用于寻找油田和地热能源;研究地震活动;侦察潜艇等。斯坦福大学的科学家用连到5吨重铝棒上的超导量子干涉器件来寻找万有引力辐射线。超导量子干涉器件的用途极为广泛,几乎所有使用超导体的电子仪器都涉及到超导量子干涉器件。随着超导技术的发展,超导量子干涉器件的应用必然不断地扩大。许多科学家坚信,未来的超大容量快速计算机一定会用到超导的,也就是使用约瑟夫逊元件的超高速计算机。前面已经谈过,所谓约瑟夫逊效应就是把两个超导体材料靠得非常紧、离得非常近时,即使它们之间的物质是绝缘的也会有电流流过。可以简单地讲,运用这个效应的器件就称作约瑟夫逊元件。通过调节两块超导体间的绝缘层的厚薄,可以使其电压比某一特定值大时才有电流通过,小时则没有。约瑟夫逊元件就是利用了这一现象。这种现象与半导体的二极管是相同的,所以可以用于计算机。但是,约瑟夫逊器件具有极高的开关速度(是硅器件的10~100倍)和低功耗(只有硅的千分之一以下),因此发热量极小,可以实现体积小、高密集度。例如,日本电气公司开发出了使用约瑟夫逊元件的新的逻辑电路,其门开关速度达到一万亿分之一秒。此外,超导还可以在辐射探测仪、模拟信号处理器、超导磁屏蔽、电压基准等方面广泛应用。在国防系统方面,超导技术在军事上也可大显身手。在弱电方面,用于水下通信、潜艇探测、遥感、扫雷等;制成高频微波器件、红外探测器,用于雷达、微波通信及地面卫星接收机;超导天线及馈线系统,用于导弹和卫星;数字信号和数据处理器等。在强电方面,主要是利用高电流密度超导材料所产生的强磁场及超导储能线圈可以存储大量能量的特性作为武器的能源,这样可以减少储能设备的尺寸和重量。美国的“星球大战”计划中投入5000万美元进行这方面的研究。研究中使用的低温超导磁体,估计其储能密度相当高,在微微秒时间内释放出来。超导强磁体用于舰船推进系统。美国已用低温超导材料制造出试验性的3兆瓦直流电机,用于舰船推进系统并在海中进行了试验。该电机比相同功率传统空冷电机小33%。实际上,利用低温超导材料及当前的技术可以使电机的重量进一步减小,例如一台具有3万千瓦的超导单极直流电机仅为现在同样功率的交流电机重量的四分之一。美国正在研制这类规模的超导电机,日本也在进行小模型的试验研究。超导电子轨道炮。美国的“星球大战”计划组织支持了该项技术的研究。轨道炮技术是作为射弹加速器来使用的,它能使抛射物达到极高的速度。这种抛射系统不同于化学推进系统,前者可达到的末端点的速度不受气体膨胀速度限制而由行进的电磁脉冲的速度决定,因此可达到很高的速度。高温超导的应用大多是低温超导应用的延伸,即当前已实用的或可预见年份实用的低温超导设备与器件中的低温超导材料用高温超导材料替代,以降低成本,扩大超导的应用范围。但高温超导应用遇到的问题较多,现在仍是物理学前沿阵地的富有挑战性的研究课题。

超导体是什么?

超导体最重要的特点是电流通过时电阻为零,有一些类型的金属(特别是钛、钒、铬、铁、镍),当将其置于特别低的温度下时,电流通过时的电阻就为零。在普通的导体中,大部分通过导体的电流由于电阻的原因变为热能,因而被“消耗”掉了。在超导体中,实际上没有阻力,这样,一旦接通电流,从理论上讲就永远不会中断。在一个用超导体制成的电磁体(一个线圈,电流从中通过时产生电磁场)所构成的电路中,从理论上讲只送入一次电流,就可以在电路内不停的流动,从而就能使电磁场持续不断。当然,实际上是存在损耗的,不可能实现这类“永动”,不能不去考虑必需的能源投入,以使超导体能保持其产生零电阻现象所需要的底温状态(即-269℃,比绝对零度高出4℃)。

然而,从80年代初开始,人们发现了新材料。这种新材料能够在越来越接近常温的条件下形成超导体。为在这些物质的基础上获得超导体,各国都正在进行各种研究。这种材料同传统材料的区别在于它不需要冷却系统。

超导现象是1911年由荷兰人海克·卡默林·翁内斯(1853-1926)发现的。几十年中,没有人能做出解释。在理论上让人信服的解释出现在半个世纪之后,即在1957年由物理学家约翰·巴丁(晶体管发明者之一)、利昂·库珀和约翰施里弗宣布的“BCS理论”。电流是一种在金属离子,亦即带有多出的正电荷的原子周围流动的自由电子,电阻的产生是因为离子阻碍了电子的流动,而阻碍的原因又是由于原子本身的热振动以及它们在空间位置的不确定所造成的。

在超导体中,电子一对一对结合构成了所谓的“库珀对”,它们中的每一对都以单个粒子的形式存在。这些粒子抱成一团流动,不顾及金属离子的阻力,好像是液体一样在流动。这样,事实上就中和了任何潜在的阻力因素。



在普通导体中会发生什么情况

上边这幅图使电传导观念形象化了,电传导就如同球体(电子)运动一样。它在斜面上流动(斜面相当于一个导体)障碍物代表金属离子不规则的网状结构,它们不允许电子自由流动。这就是形成电阻的原因。电子与全属离子相撞,输出了它的部分能量,这些能量又转化为热量。

超导体会发生什么变化

超导体中电子两个两个地成组聚集在所谓的“库珀对”里面,它们又表现为单一的粒子,这同煤气分子能够聚集成液体状是同样的道理。超导电子作为整体以液体的形态表现出来,尽管存在着由于金属离子摆动和金属离子网的不规则带来的阻碍,它还是能够自由流动而不受影响。


超导体材料有什么好处?

超导材料最诱人的应用是发电、输电和储能。
  由于超导材料在超导状态下具有零电阻和完全的抗磁性,因此只需消耗极少的电能,就可以获得10万高斯以上的稳态强磁场。而用常规导体做磁体,要产生这么大的磁场,需要消耗3.5兆瓦的电能及大量的冷却水,投资巨大。
  超导磁体可用于制作交流超导发电机、磁流体发电机和超导输电线路等。
  超导发电机 在电力领域,利用超导线圈磁体可以将发电机的磁场强度提高到5万~6万高斯,并且几乎没有能量损失,这种发电机便是交流超导发电机。超导发电机的单机发电容量比常规发电机提高5~10倍,达1万兆瓦,而体积却减少1/2,整机重量减轻1/3,发电效率提高50%。
  磁流体发电机 磁流体发电机同样离不开超导强磁体的帮助。磁流体发电发电,是利用高温导电性气体(等离子体)作导体,并高速通过磁场强度为5万~6万高斯的强磁场而发电。磁流体发电机的结构非常简单,用于磁流体发电的高温导电性气体还可重复利用。
  超导输电线路 超导材料还可以用于制作超导电线和超导变压器,从而把电力几乎无损耗地输送给用户。据统计,目前的铜或铝导线输电,约有15%的电能损耗在输电线路上,光是在中国,每年的电力损失即达1000多亿度。若改为超导输电,节省的电能相当于新建数十个大型发电厂。
广阔的超导应用
  高温超导材料的用途非常广阔,大致可分为三类:大电流应用(强电应用)、电子学应用(弱电应用)和抗磁性应用。大电流应用即前述的超导发电、输电和储能;电子学应用包括超导计算机、超导天线、超导微波器件等;抗磁性主要应用于磁悬浮列车和热核聚变反应堆等。
  超导磁悬浮列车 利用超导材料的抗磁性,将超导材料放在一块永久磁体的上方,由于磁体的磁力线不能穿过超导体,磁体和超导体之间会产生排斥力,使超导体悬浮在磁体上方。利用这种磁悬浮效应可以制作高速超导磁悬浮列车。
  超导计算机 高速计算机要求集成电路芯片上的元件和连接线密集排列,但密集排列的电路在工作时会发生大量的热,而散热是超大规模集成电路面临的难题。超导计算机中的超大规模集成电路,其元件间的互连线用接近零电阻和超微发热的超导器件来制作,不存在散热问题,同时计算机的运算速度大大提高。此外,科学家正研究用半导体和超导体来制造晶体管,甚至完全用超导体来制作晶体管。
  核聚变反应堆“磁封闭体” 核聚变反应时,内部温度高达1亿~2亿℃,没有任何常规材料可以包容这些物质。而超导体产生的强磁场可以作为“磁封闭体”,将热核反应堆中的超高温等离子体包围、约束起来,然后慢慢释放,从而使受控核聚变能源成为21世纪前景广阔的新能源。


超导体是有什么作用和用途?

超导体的应用可分为三类:强电应用、弱电应用和抗磁性应用。强电应用即大电流应用,包括超导发电、输电和储能;弱电应用即电子学应用,包括超导计算机、超导天线、超导微波器件等;抗磁性应用主要包括磁悬浮列车和热核聚变反应堆等。超导磁体可用于制作交流超导发电机、磁流体发电机和超导输电线路等。目前超导量子干涉仪(SQUID)已经产业化。 另外,作为低温超导材料的主要代表NbTi合金和Nb3Sn,在商业领域主要应用于医学领域的MRI(核磁共振成像仪)。作为科学研究领域,已经应用于欧洲的大型项目LHC项目,帮助人类寻求宇宙的起源等科学问题。扩展资料人类最初发现超导体是在1911年,这一年荷兰科学家海克·卡末林·昂内斯(Heike Kamerlingh Onnes)等人发现。汞在极低的温度下,其电阻消失,呈超导状态。此后超导体的研究日趋深入,一方面,多种具有实用潜力的超导材料被发现,另一方面,对超导机理的研究也有一定进展。超导体具有三个基本特性:完全导电性(零电阻效应)、完全抗磁性(迈斯纳效应)、通量量子化(约瑟夫森效应)。参考资料来源:百度百科-超导体

超导体的应用有哪些?

超导体的应用有:1、强电应用超导发电机:目前,超导发电机有两种含义。一种含义是将普通发电机的铜绕组换成超导体绕组,以提高电流密度和磁场强度,具有发电容量大、体积小、重量轻、电抗小、效率高的优势。2、弱电应用超导计算机:高速计算机要求集成电路芯片上的元件和连接线密集排列,但密集排列的电路在工作时会发生大量的热,而散热是超大规模集成电路面临的难题。3、抗磁性应用超导磁悬浮列车:利用超导材料的抗磁性,将超导材料放在一块永久磁体的上方,由于磁体的磁力线不能穿过超导体,磁体和超导体之间会产生排斥力,使超导体悬浮在磁体上方。扩展资料:超导体的基本特性:1、完全导电性完全导电性又称零电阻效应,指温度降低至某一温度以下,电阻突然消失的现象。完全导电性适用于直流电,超导体在处于交变电流或交变磁场的情况下,会出现交流损耗,且频率越高,损耗越大。2、完全抗磁性完全抗磁性又称迈斯纳效应,“抗磁性”指在磁场强度低于临界值的情况下,磁力线无法穿过超导体,超导体内部磁场为零的现象,“完全”指降低温度达到超导态、施加磁场两项操作的顺序可以颠倒。3、通量量子化通量量子化又称约瑟夫森效应,指当两层超导体之间的绝缘层薄至原子尺寸时,电子对可以穿过绝缘层产生隧道电流的现象,即在超导体(superconductor)—绝缘体(insulator)—超导体(superconductor)结构可以产生超导电流。参考资料来源:百度百科-超导体

上一篇:90gan

下一篇:超级计算机排名