什么是幂的乘方
幂的乘方(a^m)^n=a^(mn),与积的乘方(ab)^n=a^nb^n(1)幂的乘方,(a^m)^n=a^(mn),(m, n都为正整数)运用法则时注意以下以几点:①幂的底数a可以是具体的数也可以是多项式。如[(x+y)2]3的底数为(x+y),是一个多项式,[(x+y)2]3=(x+y)6②要和同底数幂的乘法法则相区别,不要出现下面的错误。如:(a3)4=a7; [(-a)3]4=(-a)7; a3·a4=a12(2)积的乘方(ab)^n=a^nb^n,(n为正整数)运用法则时注意以下几点:①注意与前二个法则的区别:积的乘方等于将积的每个因式分别乘方(即转化成若干个幂的乘方),再把所得的幂相乘。②积的乘方可推广到3个以上因式的积的乘方,如:(-3a2b)3如(a1·a2·…….an)m=a1m·a2m·…….anm扩展资料幂的有关运算法则:m和n是正整数同底数幂的乘法:am•an=am+n;幂的乘方:(am)n=amn;积的乘方:(ab)n=ambn;同底数幂的除法:am÷an=am-n;零指数幂:a0=1(a≠0);负指数幂:a-n=1/an;(a≠0)参考资料来源:百度百科-幂运算
同底数幂的乘法和幂的乘方和积的乘方的区别是什么?
同底数幂的乘法:既然底数相同,指数就可以相加
a^m · a^n = a^(m + n)
幂的乘方:底数不变,指数相乘
(a^n)^m = a^(mn),m个a^n相乘
(a^n)^(1/m) = a^(n/m),1/m个a^n相乘
积的乘方:
(a · b)^n = a^n · b^n
(m^a · n^b)^c = m^(ac) · n^(bc)
对于你这三题:
第一题是幂的乘方:(10^3)^5 = 10^(3 · 5) = 10^15
第二题是积的乘方:(2a)^3 = 2^3 · a^3 = 8a^3
第三题是幂的乘方与积的乘方的混合:先做积的乘方,再做幂的乘方
(x · y^2)^2
= x^2 · (y^2)^2,积的乘方:(ab)^n = a^n · b^n
= x^2 · y^4,幂的乘方:(a^m)^n = a^(mn)