spss统计分析结果中,df是什么意思?
df是自由度的意思,是英文degree of freedom的缩写。是计算某一统计量时,取值不受限制的变量个数。公式为:df=n-k。其中n为样本数量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它独立统计量的个数。用于抽样分布中。扩展资料自由度等于独立变量减掉其衍生量数。举例来说,变异数的定义是样本减平均值(一个由样本决定的衍生量),因此对N个随机样本而言,其自由度为N-1。 在估计统计参数时,数据中可以自由变化的观察量的个数。假设数据集中包含一个观察变量X XX的10个样本,如果你不用它来估计任何事情,那么每个值都可以被取到,每个值都可以完全自由变化。参考资料来源:百度百科-spss
df是什么意思
微分
可以用微分形式来讲,这样又严格又简明:
对任意映射f:M->N,定义df是在切空间诱导的线性映射,对f是实函数的情形,f:
M->R,任一点p∈M,
df基本上就是该点函数图像的切平面,任意M上的切向量X,
df(X)就是f在X的方向导数。
x只是一个普通的函数——坐标函数,就是说,任一点p,
x(p)定义为p的横坐标(或第一个坐标)
。
所以如果你理解了dy,你就理解了dx,在一元微积分的情形,M=N=R,y=f(x)把x轴上的点映到y轴上的点,但是一般这映射不是线性的,比如f(x)=x^2,就不是一次的。但是只要f足够好(可导),我们就可以在任一点附近用线性映射来近似,比如当x=1时,g(x)=f'(1)*x=2x就是对x=1附近的f(x)=x^2的(一阶)近似,近似的精度用有限增量公式表达:f(x)-f(1)=g(x)+o(x-1)。这个近似是线性的,这就是由f在切空间诱导的那个。
f的微分就定义成df,所以dx就是x(这个函数)的微分。
然后根据微分形式的不变性(就是链式法则),定义微分形式df的积分为f的普通黎曼积分。
这时候,因为微分是在切空间的近似,确实可以把微分df想象成函数的小变动(因为有限增量公式只有在自变量变动很小时近似才有效,而变动趋于0时,这近似就趋于完美)。同样的dx可以想象成x这个函数的小变动。这对于物理学家来说,他们就是这么思考问题的,很方便而且很有效。
这样的一个讲法,就既得到了数学的严格性,不用引入任何含糊其辞的概念,又能学习使用物理学家的考虑问题的方式。
df到底是什么意思
df是自由度的意思,是英文degree of freedom的缩写。是计算某一统计量时,取值不受限制的变量个数。公式为:df=n-k。其中n为样本数量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它独立统计量的个数。用于抽样分布中。定义:统计学上,自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的数据的个数,称为该统计量的自由度。一般来说,自由度等于独立变量减掉其衍生量数。举例来说,变异数的定义是样本减平均值(一个由样本决定的衍生量),因此对N个随机样本而言,其自由度为N-1。数学上,自由度是一个随机向量的维度数,也就是一个向量能被完整描述所需的最少单位向量数。举例来说,从电脑屏幕到厨房的位移能够用三维向量来描述,因此这个位移向量的自由度是3。自由度也通常与这些向量的座标平方和,以及卡方分布中的参数有所关联 。
请问SPSS独立样本t检验中df值代表什么意思?
df是自由度的意思,自由度是一个统计学术语。计算某一统计量时,取值不受限制的变量个数。通常df=n-k。其中n为样本数量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它独立统计量的个数。自由度通常用于抽样分布中。自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的数据的个数,称为该统计量的自由度。自由度等于独立变量减掉其衍生量数。举例来说,变异数的定义是样本减平均值(一个由样本决定的衍生量),因此对N个随机样本而言,其自由度为N-1。扩展资料SPSS是世界上最早的统计分析软件,由美国斯坦福大学的三位研究生Norman H. Nie、C. Hadlai (Tex) Hull 和 Dale H. Bent于1968年研究开发成功,同时成立了SPSS公司,并于1975年成立法人组织、在芝加哥组建了SPSS总部。SPSS for Windows由于其操作简单,已经在我国的社会科学、自然科学的各个领域发挥了巨大作用。该软件还可以应用于经济学、数学、统计学、物流管理、生物学、心理学、地理学、医疗卫生、体育、农业、林业、商业等各个领域。具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。参考资料来源:百度百科-spss参考资料来源:百度百科-自由度