协方差矩阵
a的协方差矩阵就是E(aa')。其中E代表数学期望,a'代表a的转置。我这里默认你这个a是写成列向量的形式的。所以a/||a||的协方差矩阵就是E(aa')/||a||^2,就是把a的协方差矩阵里的每个元素都除以||a||^2。当a的协方差矩阵是单位阵时,a的任意一个元素(都是随机变量)的方差都是1,而且任意两个元素不相关(不相关不代表独立)。
怎么证明 :协方差矩阵是半正定的?请回答
考虑概率分布组成的线性空间,显然协方差是其中的一个bilinear form,而且显然是非退化的,所以它是一个内积。由此可知协方差矩阵是关于协方差这个内积的Gram矩阵,自然是对称半正定的,而且它是正定的当且仅当所有涉及的概率分布都是线性无关的。协方差矩阵,基本上向量 (X - μ) 与其转置相乘,然后求期望,而期望就是个加权平均而已。这样的东西,从线性代数上讲,基本上全是半正定的。扩展资料若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。协方差与期望值有如下关系:Cov(X,Y)=E(XY)-E(X)E(Y)。协方差的性质:(1)Cov(X,Y)=Cov(Y,X);(2)Cov(aX,bY)=abCov(X,Y),(a,b是常数);(3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。参考资料来源:百度百科-协方差参考资料来源:百度百科-协方差矩阵
协方差矩阵有什么意义
定义是变量向量减去均值向量,然后乘以变量向量减去均值向量的转置再求均值。例如x是变量,μ是均值,协方差矩阵等于E[(x-μ)(x-μ)^t],物理意义是这样的,例如x=(x1,x2,...,xi)那么协方差矩阵的第m行n列的数为xm与xn的协方差,若m=n,则是xn的方差。如果x的元素之间是独立的,那么协方差矩阵只有对角线是有值,因为x独立的话对于m≠n的情况xm与xn的协方差为0。另外协方差矩阵是对称的。
一般多变量分布的时候(例如多元高斯分布)会用到协方差矩阵,工程上协方差矩阵也用来分析非确定性平稳信号的性质以及定义非确定性向量的距离(马哈拉诺比斯范数)。