统计学

时间:2024-03-01 09:04:02编辑:分享君

统计学的发展史是什么?

“统计”一词,英语为statistics,用作复数名词时,意思是统计资料,作单数名词时,指的是统计学。一般来说,统计这个词包括三个含义:统计工作、统计资料和统计学。这三者之间存在着密切的联系,统计资料是统计工作的成果,统计学来源于统计工作。原始的统计工作即人们收集数据的原始形态已经有几千年的历史,而它作为一门科学,还是从17世纪开始的。英语中统计学家和统计员是同一个(statistician),但统计学并不是直接产生于统计工作的经验总结。每一门科学都有其建立、发展和客观条件,统计科学则是统计工作经验、社会经济理论、计量经济方法融合、提炼、发展而来的一种边缘性学科。
  1,关于单词statistics
  起源于国情调查,最早意为国情学。
  十 七世纪,在英格兰人们对“政治算术”感兴趣。1662年,John Graunt发表了他第一本也是唯一一本手稿,《natural and politics observations upon the bills of mortality》, 分析了生男孩和女孩的比例,发展了现在保险公司所用的那种类型的死亡率表。
  英文的statistics大约在十八世纪中叶由德国学者 Gottfried Achenwall所创造,是由状态status和德文的政治算术联合推导得出的,第一次由John Sinclair所使用,即1797年出现在Encyclopaedia Britannica。(早期还有一个单词publicitics和statistics竞争“统计”这一含义,如果得胜,现在就开始流行 publicitical learning了)。
  2,关于高斯分布或正态分布
  1733年,德-莫佛(De Moivre)在给友人分发的一篇文章中给出了正态曲线(这一历史开始被人们忽略)
  1783年,拉普拉斯建议正态曲线方程适合于表示误差分布的概率。
  1809年,高斯发表了他的关于天体运行论的伟大著作,在这一著作的第二卷第三节中,他导出正态曲线适宜于表示误差规律,同时承认拉普拉斯较早的推导。
  正态分布在十九世纪前叶因高斯的工作而加以推广,所以通常称作高斯分布。卡尔-皮尔逊指出德-莫佛是正态曲线的创始人,第一个称它为正态分布,但人们仍习惯称之高斯分布。
  3,关于最小二乘法
  1805年,Legendre提出最小二乘法,Gauss声称自己在1794年用过,并在1809年基于误差的高斯分布假设,给出了严格推导。
  4,其它
  在十九世纪中叶,三个不同领域产生的重要发展都是基于随机性是自然界固有的这个前提上的。
  阿道夫·凯特莱特(A. Quetlet,1869)利用概率性的概念来描述社会学和生物学现象(正态曲线从观察误差推广到各种数据)
  孟德尔(G.Mendel,1870)通过简单的随机性结构公式化了他的遗传法则
  玻尔兹曼(Boltzmann,1866)对理论物理中最重要的基本命题之一的热力学第二定律给出了一个统计学的解释。
  1859 年,达尔文发表了《物种起源》,达尔文的工作对他的表兄弟高尔登爵士有深远影响,高尔登比达尔文更有数学素养,他开始利用概率工具分析生物现象,对生物计 量学的基础做出了重要贡献(可以称他为生物信息学之父吧),高尔登爵士是第一个使用相关和回归这两个重要概念的人,他还是中位数和百分位数这种概念的创始 人。
  受高尔登工作影响,在伦敦的大学学院工作的卡尔-皮尔逊开始把数学和概率论应用于达尔文进化论,从而开创了现代统计时代,赢得了统计之父的称号,1901年Biometrika第一期出版(卡-皮尔逊是创始人之一)。
  5,关于总体和样本
  在早期文献中可找到由某个总体中抽样的明确例子,然而从总体中只能取得样本的认识常常是缺乏的。 ----K.皮尔逊时代
  到十九世纪末,对样本和总体的区别已普遍知道,然而这种区分并不一定总被坚持。----1910年Yule在自己的教科书中指出。
  在 1900年代的早期,区分变的更清楚,并在1922年被Fisher特别强调。----Fisher在1922年发表的一篇重要论文中《On the mathematical foundation of theoretical statistics》,说明了总体和样本的联系和区别,以及其他概念,奠定了“理论统计学”的基础。
  6,期望、标准差和方差
  期望是一个比概率更原始的概念,在十七世纪帕斯卡和费马时代,期望概念已被公认了。K.皮尔逊最早定义了标准差的概念。1918年,Fisher引入方差的概念。
  力学中的矩和统计学中的中数两者之间的相似性已被概率领域的早期工作者注意到,而K.皮尔逊在1893年第一次在统计意义下使用“矩”。
  7,卡方统计量
  卡方统计量,是卡-皮尔逊提出用于检验已知数据是否来自某一特定的随机模型,或已知数据是否与已给定的假设一致。卡方检验被誉为自1900年以来在科学技术所有分支中20个尖端发明之一,甚至敌人Fisher都对此有极高评价。
  8,矩估计与最大似然
  卡-皮尔逊提出了使用矩来估计参数的方法。
  Fisher则在1912年到1922年间提出了最大似然估计方法,基于直觉,提出了估计的一致性、有效性和充分性的概念。
  9,概率的公理化
  1933年,前苏联数学家柯尔莫格洛夫(Kolmogorov)发表了《概率论的基本概念》,奠定了概率论的严格数学基础。
  10,贝叶斯定理
  贝叶斯对统计学几乎没有什么贡献,然而贝叶斯的一篇文章成为贝叶斯学派统计学的思想模式的焦点,这一篇文章发表于1763年,由贝叶斯的朋友、著名人寿保险原理的开拓者Richard Price在贝叶斯死后提出来的----贝叶斯定理。
  概 率思想的两种方法,(1)作为一个物理系统内在的一种物理特性,(2)对某一陈述相信程度的度量。 在1950年代后期止,多数统计学家采取第一种观点,即概率的相对频数解释,这一时期贝叶斯定理仅应用在概率能在频数框架内解释的场合。贝叶斯统计学派著 作的一个浪潮始于1960年。自此,赞成和反对贝叶斯学派统计的两方以皮尔逊和费舍尔所特有的激情和狂怒进行申辩和争辩。
  在1960年以前,几乎所有的统计书刊都避免使用贝叶斯学派方法,Fisher坚持避免使用贝叶斯定理,并在他的最后一本书中再一次坚决的拒绝了它。卡尔-皮尔逊偶然使用,总的来说是避免的。奈曼和E.S.皮尔逊在他们有关假设检验的文章中坚决反对使用。


统计学中t值p值是什么意思?怎么计算?

1、t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(n<30),总体标准差σ未知的正态分布资料。计算:t的检验是双侧检验,只要T值的绝对值大于临界值就是不拒绝原假设。2、P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。计算:概率定义为:P(A)=m/n,其中n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。拓展资料统计学是关于认识客观现象总体数量特征和数量关系的科学。它是通过搜集、整理、分析统计资料,认识客观现象数量规律性的方法论科学。由于统计学的定量研究具有客观、准确和可检验的特点,所以统计方法就成为实证研究的最重要的方法,广泛适用于自然、社会、经济、科学技术各个领域的分析研究。 参考资料:百度百科-统计学

统计学是什么意思,主要学什么

统计学(statistics)是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化分析、总结,做出推断和预测,为相关决策提供依据和参考。它被广泛的应用在各门学科之上,从物理和社会科学到人文科学,甚至被用来工商业及政府的情报决策之上。随着数字化的进程不断加快,人们越来越多地希望能够从大量的数据中总结出一些经验规律从来为后面的决策提供一些依据。
统计学专业不是仅仅像其表面的文字表示,只是统计数字,而是包含了调查、收集、分析、预测等。应用的范围十分广泛。统计学专业主要包括一般统计和经济统计两类专业方向,培养具有良好的数学或数学与经济学素养,掌握统计学的基本理论和方法,能熟练地运用计算机分析数据,能在企业、事业单位和经济、管理部门从事统计调查、统计信息管理、数量分析等开发、应用和管理工作,或在科研、教育部门从事研究和教学工作的高级专门人才。


统计学里的“全距”是什么意思?

统计学里的“全距”(极差)是用来表示统计资料中的变异量数(measures of variation),其最大值与最小值之间的差距,即最大值减最小值后所得之数据。即:R=最大标志值-最小标志值因此,全距(R)可反映总体标志值的差异范围。根据组距计算极差,是测定标志变动度的一种简单方法,但受极端值的影响,因而它往往不能充分反映社会经济现象的离散程度。在实际工作中,全距常用来检查产品质量的 稳定性和进行质量控制。在正常生产条件下,全距在一定范围内波动,若全距超过给定的范围,就说明有异常情况出现。因此,利用全距有助于及时发现问题,以便采取措施,保证产品质量。扩展资料在统计中常用极差来刻画一组数据的离散程度,以及反映的是变量分布的变异范围和离散幅度,在总体中任何两个单位的标准值之差都不能超过极差。同时,它能体现一组数据波动的范围。极差越大,离散程度越大,反之,离散程度越小。极差只指明了测定值的最大离散范围,而未能利用全部测量值的信息,不能细致地反映测量值彼此相符合的程度,极差是总体标准偏差的有偏估计值,当乘以校正系数之后,可以作为总体标准偏差的无偏估计值。它的优点是计算简单,含义直观,运用方便,故在数据统计处理中仍有着相当广泛的应用。 但是,不能反映其间的变量分布情况,同时易受极端值的影响。参考资料来源:百度百科-极差

上一篇:铁甲威虫

下一篇:王振