增根

时间:2024-03-01 11:53:19编辑:分享君

增根是什么意思?

增根,数学名词。是指方程求解后得到的不满足题设条件的根。一元二次方程与分式方程和其它产生多解的方程在一定题设条件下都可能有增根。在分式方程化为 整式方程的过程中,分式方程解的条件是使原方程分母不为零。若整式方程的根使最简公分母为0,(根使整式方程成立,而在分式方程中分母为0)那么这个根叫做原分式方程的增根。拓展资料一、外文名:extraneous root别 名:原分式方程的增根二、研究领域:数学 三、来源对于分母的值为零时,这个分数无意义,所以不允许分母为0,即本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。四、

什么叫增根?

增根:数学名词,是指在分式方程化为整式方程的过程中,若整式方程的根使最简公分母为0,(根使整式方程成立,而在分式方程中分母为0)那么这个根叫做原分式方程的增根。
举例:
x/(x-2)-2/(x-2)=0
解:去分母,x-2=0
x=2
但是X=2使分母等于0(无意义),所以X=2是增根。

增根的不可忽视性:
许多人解方程时,得到了增根,比如说能量是负值,一般的人都会将这个忽视掉,但这些值是挺令人寻味的。著名的物理学家狄拉克利用相对论、量子力学寻找粒子的能量时,他发现某个粒子的能量和其动量紧密相关,即E^2=p^2+m^2(p为动量,m为粒子的质量),解得E=±(p^2+m^2)^(1/2),你肯定想保留正根,因为你知道能量不会是负值,但数学家们告诉狄拉克,你不能忽略负值,因为数学告诉我有两个根,你不能随便丢掉。
后来事实证明,第二个根,也就是为负的那个根,正是理论的关键:世界上既有粒子,也有反粒子。负能量就是用来解释什么是反粒子的。


数学中增根是什么意思?

在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根。
如果一个分式方程的根能使此方程的公分母为零,那么这个根就是原方程的增根。
增根的产生的原因:
对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。
分式方程两边都乘以最简公分母化分式方程为整式方程,这时未知数的允许值扩大,因此解分式方程容易发生増根。
例如:
设方程
A(x)=0
是由方程
B(x)=0
变形得来的,如果这两个方程的根完全相同(包括重数),那么称这两个方程等价.如果
x=a
是方程
A(x)=0
的根但不是B(x)=0
的根,称
x=a
是方程的增根;如果x=b
是方程B(x)=0
的根但不是A(x)=0
的根,称x=b
是方程B(x)=0
的失根.


数学中什么是增根?

增根(extraneous
root
),在分式方程化为整式方程的过程中,若整式方程的根使最简公分母为0,(根使整式方程成立,而在分式方程中分母为0)那么这个根叫做原分式方程的增根
编辑本段产生增根的来源
  对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。


增根是什么意思,要详细

在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程必须检验.为了简便,通常把求得的根代入变形时所乘的整式(最简公分母),看它的值是否为0,使这个整式为0的根是原方程的增根,必须舍去.
参考资料:http://ced.xxjy.cn/resource/cz/czsx/new3/dsc2/fs/jxfz0016zw2-01_0026.htm


上一篇:凤凰图片

下一篇:镇雄