时间:2024-03-08 06:15:37编辑:分享君

钨的作用是什么?

钨的主要用途 钨及其合金广泛应用于电子、电光源工业。用于制造各种照明用灯泡,电 子管灯丝使用的是具有抗下垂性能的掺杂钨丝。 掺杂钨丝中添加铼。由含铼量低的钨铼合金丝与含铼量高的钨铼合金丝制 造的热电偶, 其测温范围极宽(0~2500℃), 温度与热电动势之间的线性关系好, 测温反应速度快(3 秒),价格相对便宜,是在氢气氛中进行测量的较理想的热电 偶。 钨丝不仅触发了一场照明工业的革命,同时还由于它的高熔点,在不丧失 其机械完整性的前提下, 成为电子的一种热离子发射体, 比如作扫描电(子显微) 镜和透射电(子显微)镜的电子源。还用于作 X 射线管的灯丝。在 X 射线管中, 钨丝产生的电子被加速,使之碰撞钨和钨铼合金阳极,再从阳极上发射出 X 射 线。为产生 X 射线要求钨丝产生的电子束的能量非常之高,因此被电子束碰撞 的表面上的斑点非常之热,故在大多数 X 射线管中使用的是转动阳极。 此外大尺寸的钨丝还用作真空炉的加热元件。 钨的密度为 19.25 克/厘米 3 ,约为铁(7.87 克/厘米 3 )的 2.5 倍,是周期 系最重的金属元素之一。基于钨的这一特性制造的高密度的钨合金(即高比重钨 合金)已成为钨的一个重要应用领域。 采用液相烧结工艺, 在钨粉中同时加入镍、 铁、铜及少量其他元素,即可制成高密度钨合金。根据组分的不同,高密度钨 合金可分为钨—镍—铁和钨—镍—铜两个合金系。通过液相烧结,其密度可达 17~18.6 克/厘米
所谓液相烧结是指混合粉末压坯在烧结温度下有一定量 液相存在的烧结过程。其优点在于液相润湿固相颗粒并溶解少量固体物质,大 大加快了致密化和晶粒长大的过程,并达到极高的相对密度。比如对通常在液 相烧结时使用的镍铁粉而言, 当烧结进行时, 镍铁粉熔化。 尽管在固相钨(占 95% 的体分数)中液态镍铁的溶解度极小,但固态钨却易于溶解在液态镍铁中。一旦 液体镍铁润湿钨粒并溶解一部分钨粉,钨颗粒则改变形状,其内部孔隙当液流 进入时立即消失。过程继续下去,则钨颗粒不断粗化和生长,到最后产生接近 100%致密且具有最佳显微组织的最终产品。 用液相烧结制成高密度钨合金除密度高外还有比纯钨更好的冲击性能,其 主要用途是制造高穿透力的军用穿甲弹。 碳化钨在 1000℃以上的高温仍能保持良好的硬度,是切削、研磨的理想工 具。
1923 年德国的施罗特尔(Schroter)正是利用 WC 的这一特性才发明 WC-Co 硬 质合金的。由于 WC-Co 硬质合金作为切削刀具及拉伸、冲压模具带来了巨大的 商机,很快在 1926~1927 年便实现了工业化生产。简单地说,先将钨粉(或 W03)与碳黑的混合物在氢气或 真空中于一定温度下碳化,即制成碳化钨(WC),再将 WC 与金属粘结剂钴按一定 比例配料,经过制粉、成型、烧结等工艺,制成刀具、模具、轧辊、冲击凿岩 钻头等硬质合金制品。
目前使用的碳化钨基硬质合金大体上可分为碳化钨—钴、碳化钨—碳化钛 —钴、碳化钨—碳化钛—碳化钽(铌)—钴及钢结硬质合金等四类,在当前全球 每年约 5 万吨钨的消费量中,碳化钨基硬质合金约占 63%。据最近的消息,全 球硬质合金的总产量约 33000 吨/年,消耗钨总供应量的 50%~55%。 钨是高速工具钢、合金结构钢、弹簧钢、耐热钢和不锈钢的主要合金元素, 用于生产特种钢的钨的用量很大。
钨可以通过固溶强化、沉淀强化和弥散强化等方法实现合金化,借以提高 钨材的高温强度、塑性。通过合金化,钨已形成多种对当代人类文明有重大影 响的有色金属合金。 钨中加入铼(3%~26%)能显著提高延展性(塑性)及再结晶温度。某些钨铼 合金经适当高温退火处理后, 延伸率可达到 5%, 远较纯钨或掺杂钨的 1%~3% 为高。
钨中加入 0.4%~4.2%氧化钍(ThO2)形成的钨钍合金,具有很高的热电子发 射能力,可用作电子管热阴极、氩弧焊电极等,但 ThO2 的放射性长期未得到解 决。 我国研制的铈钨(W-CeO2)合金及用 La2O3 和 Y203 作弥散剂制成的镧钨、钇钨合 金(氧化物含量一般在 2.2%以下)代替 W-Th02 合金, 均已大量用作氩弧焊、 等离 子焊接与切割及非自耗电弧炉等多种高温电极。
钨铜、钨银合金是一种组成元素间并无反应因而不形成新相的粉冶复合材 料。钨银、钨铜合金实际上不是合金,故被视为假合金。钨银合金即是常提及 的渗银钨。此类合金含 20%~70%铜或银,兼有铜、银的优异导电导热性能与 钨的高熔点、耐烧蚀等性能,主要用作火箭喷嘴、电触点及半导体支承件。国 外一种北极星 A-3 导弹的喷嘴就是用渗有 10%~15%银的钨管制造的,重量达 数百千克的阿波罗宇宙飞船用的火箭喷嘴也是钨制造的。
钨钼合金具有比纯钨更高的电阻率、更优异的韧性,已用作电子管热丝、 玻璃密封引出线。钨作为合金元素,在有色金属合金中要提及的还有超合金。 上个世纪 40 年代为适应航空用涡轮发动机对高温材料的需要,在隆隆的炮火中 诞生了超合金。超合金由镍基、钴基、铁基三类特种结构合金组成。它们在高 温(500~1050 ℃)下作业时仍能保持极高的强度、抗蠕变性能、抗氧化性能及 耐蚀性。此外,它们在长达数年的使用期限内,可保证不会断裂,也就是具有 耐高周期疲劳和低周期疲劳的特性。这类性能对人命关天的航空航天产业万分 重要。 目前使用的知名超合金共有 35~40 个牌号,其中相当一部分的主成分之一 为钨


钨有什么作用?

经过冶炼后的钨是银白色金属。它的熔点高达3410℃。这个温度高得足以使大多数金属蒸发。过去,由于我国缺乏冶炼钨的设备和技术,只能生产钨精矿砂,以廉价卖给外国,再以高价向资本主义国家买深加工钨产品,受双重剥削。国外在1906年就研究成功以钨丝作电灯泡中的发光灯丝。1929年,美国算了一笔账:仅用钨生产白炽灯丝一项,就节约了40万美元。世界80%的钨用于优质钢冶炼;15%生产硬质钢,可用于制造枪械、火箭推进器的喷嘴、切削金属等。

钨有哪些特点

钨是银白色有光泽的金属,熔点极高,硬度很大。
钨是稀有高熔点金属,属于元素周期表中第六周期(第二长周期)的VIB族。钨是一种银白色金属,外形似钢。钨的熔点高,蒸气压很低,蒸发速度也较小。钨的化学性质很稳定,常温时不跟空气和水反应,不溶于盐酸、硫酸、硝酸和碱溶液。溶于王水以及硝酸和氢氟酸的混合液。高温下能与氯、溴、碘、碳、氮、硫等化合,但不与氢化合。


钨极有哪些种类和特点

钨极有哪些种类和特点
尽管金属钨是比较理想的电极材料,但是纯钨在常温下发射电子的能力还是较差。通常我们用逸出功(单位是V)来衡量金属材料发射电子能力的强弱,逸出功低表明此种材料只需要外界给予较小的能量就可以发射出电子,所以电子发射能力强;反之,逸出功大,说明材料发射电子能力弱。试验研究表明,如果金属表面存在着氧化物或者渗入某些微量元素,则可以降低材料的逸出功而增加材料发射电子能力。表2-9列出了纯钨和钨合金的逸出功。

钨电极有哪几种类型,各有何特点?

目前我国常用的钨极材料有三种:纯钨、钍钨〔W-Th )和铈钨(W-Ce)。这三种钨极的成分见表2-10,三种电极性能比较见表2-11。目前正在研究的电极材料还有锆钨、镧钨、钇钨及其他多元稀土钨极。

钨电极有哪几种类型,各有何特点?

从表2-11中可知铈钨的综合性能较好,钍钨的焊接性能也不错,但是有些微量的放射性剂量,所以目前逐步被铈钨替代,在采用大电流焊接时它的烧损要比铈钨来得少。纯钨的焊接性能较差,所以现在用得较少。
钨极允许选用的焊接电流值不仅和直径有关还取决于焊接电流种类和极性


钨怎么得来的

  钨矿石提炼
  钨是一种分布较广泛的元素,几乎遍见于各类岩石中,但含量较低。 左为黑钨矿,右为白钨矿
  [1]通过有关地质作用加以富集才能形成矿床作为商品矿石开采。钨在地壳中的平均含量为1.3×10-6,在花岗岩中含量平均为1.5×10-6。钨在自然界主要呈六价阳离子,其离子半径为0.68×10-10m。由于W6+离子半径小,电价高,具有强极化能力,易形成络阴离子,因此钨主要以络阴离子形式〔WO4〕2-,与溶液中的Fe2+、Mn2+、Ca2+等阳离子结合形成黑钨矿或白钨矿沉淀。黑钨矿结晶温度为320~240℃,白钨矿的结晶温度为300~200℃。 在表生作用中,由于含钨矿物较稳定,常形成砂矿。但在酸性条件下,含钨矿物可被分解,并以WO3形式溶于地表水中,在一定条件下形成某些钨的次生矿物。有时以矿物微粒或离子形式被粘土或铁锰氧化物吸附而集聚于页岩、泥质细砂岩及铁锰矿层中。 近年来在古老的变质岩系中发现有层控钨矿床和钨的矿源层,说明在变质作用过程中,钨也能发生某种程度的富集。
  矿物组成
  钨的重要矿物均为钨酸盐。在成矿作用过程中能与〔WO4〕2-络阴离子结合的阳离子仅有几个,主要有Ca2+、Fe2+、Mn2+、Pb2+,其次为Cu2+、Zn2+、Al3+、Fe3+、Y3+等,因而矿物种类有限,目前在地壳中仅发现有20余种钨矿物和含钨矿物,即黑钨矿族:钨锰矿、钨铁矿、黑钨矿;白钨矿族:白钨矿(钙钨矿)、钼白钨矿、铜白钨矿;钨华类矿物:钨华、水钨华、高铁钨华、钇钨华、铜钨华、水钨铝矿;不常见的钨矿物:钨铅矿、斜钨铅矿、钼钨铅矿、钨锌矿、钨铋矿、锑钨烧绿石、钛钇钍矿(含钨)、硫钨矿等。 尽管已发现的钨矿物和含钨矿物有20余种,但其中具有开采经济价值的只有黑钨矿和白钨矿。黑钨矿(Fe、Mn)WO4,含WO3 76%;白钨矿CaWO4,含WO3 80.6%。
  冶炼原料
  国外长期以来开发的钨矿,主要是白钨矿,占总生产能力的60%。而我国尽管白钨矿已探明储量376万t,占世界钨矿总储量的71%,但由于一些大型、超大型钨多金属矿床的矿石物质成分复杂,嵌布粒度细,选冶技术尚未彻底解决,因而现阶段开采仍以石英脉型黑钨矿为主,占全国采出矿量的90%。


钨是怎么发现的?

1781年由瑞典化学家卡尔·威廉·舍耶尔发现白钨矿,并提取出新的元素酸-钨酸,1783年被西班牙人德普尔亚发现黑钨矿也从中提取出钨酸,同年,用碳还原三氧化钨第一次得到了钨粉,并命名该元素。钨在地壳中的含量为0.001%。已发现的含钨矿物有20种。钨矿床一般伴随着花岗质岩浆的活动而形成。目前世界上开采出的钨矿,约50%用于优质钢的冶炼,约35%用于生产硬质钢,约10%用于制钨丝,约5%其他用于其他用途。18世纪50年代,化学家曾发现钨对钢性质的影响。然而,钨钢开始生产和广泛应用是在19世纪末和20世纪初。1900年在巴黎世界博览会上,首次展出了高速钢。因此,钨的提取工业从此得到了迅猛发展。这种钢的出现标志了金属切割加工领域的重大技术进步。钨成为最重要的合金元素。1927—1928年采用以碳化钨为主成分研制出硬质合金,这是钨在工业发展史中的一个重要阶段。这些合金各方面的性质都超过了最好的工具钢,在现代技术中得到了广泛的使用。现在的人们普遍认为电灯是由美国人托马斯·阿尔瓦·爱迪生发明的。但是,在当时爱迪生为了夺得这个头衔却费了不少的劲,打了好长时间的官司。在爱迪生发明电灯数十年之前,另一美国人亨利·戈培尔已经使用相同原理和物料,制造了可靠的电灯泡,而且在爱迪生之前,也有很多人亦对电灯的发明作出了不少贡献。1801年,英国一名化学家戴维将铂丝通电发光。他在1810年亦发明了电烛,利用两根碳棒之间的电弧照明。1854年亨利·戈培尔使用一根炭化的竹丝,放在真空的玻璃瓶下通电发光。他的发明在今天看来是首个有实际效用的白炽灯。他当时试验的灯泡已可维持400小时,但是并没有及时申请设计专利。1850年,英国人约瑟夫·威尔森·斯旺开始研究电灯。1878年,他以真空下用碳丝通电的灯泡得到英国的专利,并开始在英国建立公司,在各家庭安装电灯。1874年,加拿大的两名电气技师申请了一项电灯专利。他们在玻璃泡之下充入氦气,以通电的碳杆发光。但是他们无足够财力继发展这发明,于是在1875年把专利卖给爱迪生。爱迪生购下专利后,尝试改良使用的灯丝。1879年他改以碳丝造灯泡,成功维持13个小时。到了1880年,他造出的炭化竹丝灯泡曾成功在实验室维持1200小时。但是在英国,斯旺控告爱迪生侵犯专利,并且获得胜诉。爱迪生在英国的电灯公司被迫让斯旺加入为合伙人。但后来斯旺把他的权益及专利都卖给了爱迪生。在美国,爱迪生的专利亦被挑战。美国专利局曾判决他的发明已有先例,属于无效。最后经过多年的官司,爱迪生才取得碳丝白炽灯的专利权。灯泡

什么是钨钻

是钨的合金




性质:第6族(Ⅵ B)元素。原子序数74。稳定同位素180,182,183(有同质异能核),184,186。密度19.35g/cm3(20℃)。熔点3410℃。沸点5660℃。氧化态+2,+3,+4,+5,+6。纯钨呈银白色,粉末或丝状呈灰黑色。熔点、沸点都很高。密度很大,很硬,金属中韧性最强。化学性质稳定,室温下与空气、水不发生反应,不与酸及溴、碘等反应,但能被钝化。与王水、氢氟酸和硝酸的混合液发生反应。钨的主要矿物有黑钨矿、白钨矿,中国储量居世界首位。可由碱处理黑钨矿制得三氧化钨后,再用氢气还原制取金属钨。电解制取钨可采用卤化物、磷酸盐、硼酸盐等多种电解质体系,可用钨的氧化物、卤化物等形式作为原料加入熔体。用于制造硬质或耐高温合金、高速切削特种钢,以及用作灯泡灯丝和航空、航天技术上的耐热材料。


上一篇:权力的游戏第八季

下一篇:湘江战役