宇宙空间从哪里来的为什么能装得下这么大的宇宙?
这是一个宇宙的根本问题。先说结论吧:宇宙空间是大爆炸后不断膨胀出来的,承载这个空间的就是物质,当然这里面唱主角的很可能是今后逐渐露出真面目的暗物质和暗能量。看了一些对这个问题的解释有些令人啼笑皆非,比如说宇宙不是物质的,空间与物质不是一回事等等。这是对现代时空观完全没有一个基本认识。爱因斯坦在上世纪初就已经以全新的观点阐述了时空观,并且成为了科学界主流的认识。空间和物质是密不可分的,没有没有物质的空间,也没有没有空间的物质。时间只是物质的运动、变化的持续性、顺序性的表现。空间是宇宙生成的时候扩张出来的。现在科学界普遍认同的是大爆炸宇宙观,这个理论认为,宇宙起源于一个奇点,这个奇点体积无限小,曲率无限高,密度无限大,热度无限高。但这个奇点的无限到底无限到什么程度,没办法解释,因为那不是我们这个时空的东西。也就是说在那个奇点,没有时空,也不是我们现在认识的物质,我们现在所有的理论在那里都失效。空间和物质是从大爆炸那一刻开始才有的。这个大爆炸起源于137.5亿年前,奇点的平衡被某种因素打破,发生了大爆炸,时空开始诞生了,物质也开始诞生了。但这种诞生开始是一种混沌状态,科学家比喻宇宙就像一锅浓浓的粥,处于量子态,密度和温度都异常高,当然比起“无限”已经是可以衡量了,普朗克时间,也就是大爆炸后10-43秒,温度约10^32度,密度约10^94克/立方厘米。大爆炸发生后的30万年,才产生了中性的原子,星云物质开始渐渐产生。今年3月份,世界著名的《自然》科学杂志刊发了两张想象图,是科学家发现的第一颗恒星的描绘图,它产生于大爆炸1.8亿年前,也就是距离我们现在约136亿年前。这以后,恒星星系大量产生了。如今科学家预计宇宙中有星系10000亿个,一个星系有恒心2000-5000亿颗,想想我们这个空间有多大?据科学预测,我们这个宇宙可观测范围已经有930亿光年。一光年相当于9.46万亿公里,这就是我们现在理论上可观测的空间。到底有多大还无法探知。这个空间是宇宙大爆炸扩张出来的,而且还在扩张下去,这就是宇宙膨胀。现在对于宇宙的归宿有多种观点,一种是认为宇宙将永远膨胀下去,这个广袤的空间的物质越来越稀松,最后归于冷寂。还有一种认为宇宙膨胀到一个临界点,就会开始收缩,最终又收缩为一个奇点或者临界点,又会发生大爆炸。比较时髦的超弦理论认为,组成这个宇宙的基本单元,是由比基本粒子还小的线段“弦”组成,这是个十一维空间。在我们这个三维空间周围,还存在高维空间,但卷曲的太小,我们无法看见。大爆炸是多个无数奇点同时爆炸的,所以有无数个宇宙,这些宇宙就是所谓平行宇宙。这些论点都还是猜想,虽然在数学建模上有其合理性,但还没有任何观测证明。所以,承载宇宙的空间是宇宙本身膨胀出来的,空间与宇宙是同时产生同时长大,宇宙有多大,空间就能有多大,时空物质是一体的,同消同涨,永远不能分割。(时空通讯原创作品,版权所有,非商业性转载须注明出处,商业性转载请联系作者授权)
"后生物学宇宙"是什么意思 具体点
我只知道宇宙生物学。 早年称为宇宙生物学(Cosmobiology),近年改称空间生物学(Space Biology)或空间生命科学(Space Life Science)。 自然界的全部宏观和微观秩序,都是在重力作用下建立的,地球上一切物质的内在结构和外在位置关系,无一不受重力的影响。一切生命的起源、发展、进化和消亡,都是在地球重力场中进行的,重力对生命活动及生物发育、成长和机体功能有重要影响,经过亿万年的进化过程,已适应了地面环境,重力对地球上的生命起着支配作用,它已渗透到我们的思维之中,要想摆脱重力是很困难的。一旦重力消失,处于微重力环境下时,生物体包括动物、植物、微生物和人的正常生长发育过程,生理和心理状态,将会发生哪些变化?将如何生存和繁衍?如何利用微重力环境造福人类?就成了微重力生物学的主要研究内容。在空间除了微重力环境之外,还有辐射效应等作用,因此也称为空间生物学。
宇宙第一个物质怎么诞生的?
起初,我们的宇宙起源于一个所谓的奇点,也就是说,所有的物质都集中在一个“小点”上。当然,那时的物质还没有被分成原子和分子,因此奇点的密度是非常之高。为什么宇宙起源于这个奇点?是什么原因导致了奇点从稳定状态变成不稳定状态,并爆炸?事实上,这些问题对科学家来说仍然是一个谜。在这种情况下,奇点爆炸了,从而我们的宇宙开始迅速膨胀。随着宇宙的膨胀,其温度和压力也开始慢慢下降。
宇宙起源于何处?
大爆炸模型认为,最初的宇宙是超高温、高密度的“一点。
”大约180亿年前,这“一点”突然爆炸了,仅用10-36秒,伴随着真空相转移的过冷却现象,这“一点”在瞬间几十个数量级的膨胀,成为一厘米规模的宇宙。
其后宇宙继续膨胀,温度从几十亿摄氏度开始下降,大约在5500万摄氏度时,由降温过程的能量,生成中子、质子,它们又合成原子核,这些过程仅有3分钟。约30万年后当宇宙的温度下降到3000摄氏度时,自由电子被原子核捕捉形成原子。在随后的大约3000万年中那些原子继续向外膨胀。宇宙也继续冷却,到宇宙温度降至绝对零度之上167度时,原子开始化合形成稀薄气体。此后因密度波动、引力作用等开始向新的天体进化。再经过100多亿年,显示出多种多样的物质形态, 成了今天的宇宙。
自从150亿年前的宇宙大爆炸之后,星体和各星系一直各自向外飞散。实际上膨胀还在加速进行。美国普林斯顿大学的斯坦哈特说,宇宙无始、无终,一次次宇宙大爆炸将会永不止息,不断发生。
这就是宇宙。
宇宙起源于什么?
宇宙起源的问题有点像这个古老的问题:是先有鸡呢,还是先有蛋。换句话说,就是何物创生宇宙,又是何物创生该物呢?也许宇宙,或者创生它的东西已经存在了无限久的时间,并不需要被创生。直到不久之前,科学家们还一直试图回避这样的问题,觉得它们与其说是属于科学,不如说是属于形而上学或宗教的问题,然而,人们在过去几年发现,科学定律甚至在宇宙的开端也是成立的。在那种情形下,宇宙可以是自足的,并由科学定律所完全确定。
关于宇宙是否并如何启始的争论贯穿了整个记载的历史。基本上存在两个思想学派。许多早期的传统,以及犹太教、基督教和伊斯兰教认为宇宙是相当近的过去创生的。(十七世纪时邬谢尔主教算出宇宙诞生的日期是公元前4004年,这个数目是由把在旧约圣经中人物的年龄加起来而得到的。)承认人类在文化和技术上的明显进化,是近代出现的支持上述思想的一个事实。我们记得那种业绩的首创者或者这种技术的发展者。可以如此这般地进行论证,即我们不可能存在了那许久;因为否则的话,我们应比目前更加先进才对。事实上,圣经的创世日期和上次冰河期结束相差不多,而这似乎正是现代人类首次出现的时候。
另一方面,还有诸如希腊哲学家亚里斯多德的一些人,他们不喜欢宇宙有个开端的思想。他们觉得这意味着神意的干涉。他们宁愿相信宇宙已经存在了并将继续存在无限久。某种不朽的东西比某种必须被创生的东西更加完美。他们对上述有关人类进步的诘难的回答是:周期性洪水或者其他自然灾难重复地使人类回到起始状态。
两种学派都认为,宇宙在根本上随时间不变。它要么以现在形式创生,要么以今天的样子维持了无限久。这是一种自然的信念,由于人类生命——整个有记载的历史是如此之短暂,宇宙在此期间从未显著地改变过。在一个稳定不变的宇宙的框架中,它是否已经存在了无限久或者是在有限久的过去诞生的问题,实在是一种形而上学或宗教的问题:任何一种理论都对此作解释。1781年哲学家伊曼努尔·康德写了一部里程碑式的,也是非常模糊的著作《纯粹理性批判》。他在这部著作中得出结论,存在同样有效的论证分别用以支持宇宙有一个开端或者宇宙没有开端的信仰。正如他的书名所提示的,他是简单地基于推理得出结论,换句话说,就是根本不管宇宙的观测。毕竟也是,在一个不变的宇宙中,有什么可供观测的呢?
然而在十九世纪,证据开始逐渐积累起来,它表明地球戏及宇宙拭其他部分事实上是随时间而变化的。地学家们意识到岩石以及其中的化石的形成需要花费几亿甚至几十亿年的时间。这比创生论者计算的地球年龄长得太多了。由德国物理学家路德维希·破尔兹曼提出的所谓热力学第二定律还提供了进一步的证据,宇宙中的无序度的总量(它是由称为熵的量所测量的)总是随时间而增加,正如有关人类进步的论证,它暗示只能运行了有限的时间,否则的话,它现在应已退化到一种完全无序的状态,在这种状态下万物都牌相同的温度下。
稳恒宇宙思想所遭遇到的另外困难是,根据牛顿的引力定律,宇宙中的每一颗恒星必须相互吸引。如果是这样的话,它们怎么能维持相互间恒定距离,并且静止地停在那里呢?
牛顿晓得这个问题。在一封致当时一位主要哲学家里查德·本特里的信中,他同意这样的观点,即有限的一群恒星不可能静止不动,它们全部会落某个中心点。然而,他论断道,一个无限的恒星集合不会落到一起,由于不存在任何可供它们落去的中心点。这种论证是人们在谈论无限系统时会遭遇到的陷阱的一个例子。用不同的方法将从宇宙的其余的无限数目的恒星作用到每颗恒星的力加起来,会对恒星是否维持恒常距离给出不同的答案。我们现在知道,其正确的步骤是考虑恒星的有限区域,然后加上在该区域之外大致均匀分布的更多恒星。恒星的有限区域会落到一起,而按照牛顿定律,在该区域外加上更多的恒星不能阻止其坍缩。这样,一个恒星的无限集合不能处于静止不动的状态。如果它们在某一时刻不在作相对运动,它们之间的吸引力会引起它们开始朝相互方向落去。另一种情形是,它们可能正在相互离开,而引力使这种退行速度降低。
尽管恒定不变的宇宙的观念具有这些困难,十七、十八、十九甚至至二十世纪初斯都没有人提出过,宇宙也许是随时间演化的,不管是牛顿还是爱因期坦都失去了预言宇宙不是在收缩便是在膨胀的机会。因为牛顿生活在观测发现宇宙膨胀以前的二百五十年,所以人们实在不能责备他。但是爱因斯坦应该知道得更好。他在1915年提出的广义相对论预言正在膨胀。但是他对稳恒宇宙是如此之执迷不悟,以至于要在理论中加上一个使之和牛顿理论相调和并用于抗衡引力的因素。
1929年埃德温·哈勃的宇宙膨胀的发现完全改观了有关其起源的讨论。如果你把星系现在的运动往时间的过去方向例溯,它们在一百亿和二百亿年前之间的某一时刻似乎应该重叠在一起,在这个称为大爆炸奇点的时刻,宇宙的密度和时空的曲率应为无穷大。所有的已知的科学定律在这种条件下都失效了。这对科学是一桩灾难。科学所能告诉我们的一切是:宇宙现状之所以如此是因为它是过去是处于那种形态。但是科学不能解释为何它在大爆炸后的那一瞬间是那个样子的。
这样,许多科学家对此结论感到不悦就毫不足怪了。为了避免存在大爆炸奇点以及由此引起的时间具有开端的结论,人们进行了若干尝试。其中一种称为稳恒态理论。它的思想是,随着星不互相分离而去,由连续产生的物质在星系之间的空间中形成新的星系。这样宇宙就多多少少以今日这样的状态不但已经存在了,而且还将继续存在无限长时间。
为了使宇宙继续膨胀并创生新物质,稳恒态模型需要修改广义相对论。但是所需要的产生率非常低:大约为每年每立方公里一个粒子,这不会和观测相冲突。该理论还预言了,星系和类似物体的平均密度不但在空间上而且在时间上必须是常数。然而,由马丁·赖尔和他的剑桥小组进行的银河系外射电源的普查显示,弱源的数目比强源的数目多得多。人们可以预料,弱的源在平均上讲应是较遥远的。这样就存在两种可能性:或许我们正位于宇宙中的一个强源不如平均源频繁的区域;或者过去的源的密度更高,光线在离开这些源向我们传播时更遥远的距离。这两种可能性没有一种和稳恒态理论相协调,因为该理论预言射电源密度不仅在空间上而且在时间上必须为常数。1964年阿诺·彭齐亚斯和罗伯特·威尔逊发现了从比我们的银河系遥远得多的地方起源的微波辐射背景,这是对该理论的致命打击。它具有从一个热体发射出的辐射的特征谱,尽管在这种情形下热这个字根本不适合,因为其温度只不过比绝对零度高2.7度而已。宇宙是一个既寒冷又黑暗的地方!稳恒态理论中没有一种产生具有这种谱的微波的合理机制,所以稳恒态理论难逃被抛弃的命运。
1963年两位俄国科学家欧格尼·利费席兹和伊萨克·哈拉尼科夫提出另一种思想,企图用来避免大爆炸奇性。他们说,只有当星系直接相互接近或离开时,它们才会在过去的一个单独的点上相重叠,才导致无限密度状态。可惜的是,星系还多少具有一些侧向速度,宇宙早斯就可能存在过这样的一种收缩相,这时,星系虽然曾经非常靠近过,却能设法避免互相撞击。然后宇宙会继续重新膨胀,而不必通过一种无限的密度的状态。
当利费席兹和哈拉尼科夫提出其设想时,我正是一名研究生,亟需一个问题以完成博士论文。因为是否有守大爆炸奇点的问题对于理解宇宙的起源关系重大,所以它引起了我的兴趣。我和罗杰·彭罗斯一道发展了一套数学工具,用以处理这个以及类似的问题。我们指出,如果广义相对论是正确的,任何合理的宇宙模型都必需起始于一个奇点。这就表明,科学能够预言,宇宙必须有一个开端,但是它不能够预言宇宙应如何启始的:正因为如此,人们必须求助于上帝。
审察人闪对奇性看法的变化是十分有趣的。当我还是一名研究生时,几乎没人认真地看待之。现在,作为奇性定理的一个结果,几乎无人不信宇宙是从一个奇眯起始的,物理定律在该处失效。然而,现在我认为,虽然存在奇点,物理定律仍能确定宇宙是如何起始的。
广义相对论是一种被称为经典的理论。也就是说,它没有顾及这个事实,即粒子不具备精确定义的位置和速度,由于量子力学的不确定性原理位置和速度的小范围内被“抹平”,不确定性原理不允许我们同时既测量又测量速度。因为正常情形下时空的曲率在和粒子位置的不确定性相比较时非常大,这些以我们没什么影响。然而奇性定理指出,在现在的宇宙膨胀相的开端,时空被高度地畸变,并且具有很小的曲率半径。不确定性原理在这种情形下变成非常重要。这样,广义相对论因预言奇性而导致自身的垮台。为了讨论宇宙的开端,我们需要一种结合广义相对论和量子力学的理论。
那种理论便是量子引力论。我们尚未知道正确的量子引力论应采取的准确形式。我们此刻所拥有的最佳候选者是超弦理论,但它仍有许多耒解决的困难。然而,人们可以期望,任何有前途的理论都应具有某些特征。其中之一便是爱因斯坦的思想,引力效应由被物质和能量所弯曲甚至卷曲的时空来体现。物体在弯曲空间中沿着最接近于直线的轨迹运行。然而,由于时空是弯曲的。所以它们的路径就显得是弯折的,正如同被引力场所弯折的似的。
另一种在这个终极理论中可以预料的要素是里查德·费因曼的设想,即量子理论可以表达成“对历史的求和”。该思想可以最简单的形式表达成,每颗粒子在时间中走过任何可能的路径或历史。每一路径或历史具有依其形状而定的概率。为了使这种思想可行,人们必须考虑在虚时间里发生的历史,而不是在我们感受生活于其中的实时间城发生的历史。虚时间听起来有点像是科学幻想的东西,其实它是定义得很好的数学概念。它在某种意义上可被认为是和实时间成直角的时间方向。人们把所有具有某种性质粒子历史,譬如讲在某些时刻通过某些点的历史的概率加起来。然后应把这结果延拓到我们在其中生活的实的时空中去。这不是量子力学的最熟知的手段,但它给出和其他方法得到的相同结果。
在量子引力的情形下,费因曼的对历史求和的思想牵涉到对宇宙的不同的可能性的历史,也就是对不同的弯曲时空的求和。这些代表了宇宙和它之中的任何东西的历史。人们必须指明,在对历史的求和中,应包括哪些种类的弯曲空间。这种空间种类包括具有奇性的的空间,则该理论就不能确定这类空间的概率。相反的,它们必须以某种任意的方法被赋予概率。这意味着科学不能预言时空这类奇性历史的概率。这样,它就不能预言宇宙应如何运行。然而,宇宙可能处于由只包括非奇性弯曲空间的求和所定义的状态。在这种情形下,科学定律就把宇宙完全确定,人们就不必吁求宇宙之外的某物来确定宇宙如何启始。由只对非奇性历史的求和确定宇宙的状态有点像一名醉汉在灯柱之下找他的钥匙:这儿也许不是他遗失之处,但是这儿是他可能找到的仅有的地方。类似的,宇宙也许不处于由对非奇性历史求和定义的状态,但这是科学能预言应当什么样子的仅有的状态。
1983年詹姆·哈特尔和我提出,宇宙的状态应由对一定种类历史的求和给出。这类历史由没有奇性的,而且具有有限尺度却没有边界或边缘的弯曲空间组成。它们像是地球的表面,只不过多了两维。地球的表面具有有限的面积,但是它不具有任何奇性、边界或边缘。我曾经用实验验证过这一点。我作过环球旅行,而没有落到外面去。
哈特尔和我所做的设想可以被重新表达成:宇宙的边界条件是它没有边界。只有当宇宙处于这个无边界状态时,科学定律自身才能确定每种可能历史的概率。因此,只有在这种情形下,已知的定律才会确定宇宙应如何运行。如果宇宙处于任何其他的状态,则历史求和中的弯曲空间的种类就要包括具有奇性的空间。人们必须求助于已知科学定律以外的某种原理,才能确定这种奇性历史的概率。这种原理就会是外在于我们宇宙的某种东西。我们不能从我们宇宙之中将其推导出来。而另一方面,如果宇宙是处于无边界状态,在原则上,我们就能在不确定性原理容忍的限制之仙完全确定宇宙应如何运行。
如果宇宙处于无边界状态,那对于科学而言就太好了,但是我们如何才能知道事情究竟是否如此呢?其答案是,无边界设想对宇宙应如何运行作出了明确的预言。如果这些预言不与观测相符合,则我们就能得出结论说,宇宙不处于无边界状态。这样,在哲学家卡尔·波普定义的意义上说,无边界设想是一种好的科学理论:它可被观测证伪。
如果观测不与预言相符合,我们就知道在可能历史的种类中必须有奇性。然而,这就大致上是我们知道的一切。我们不能计算出这种奇性历史的概率,因此我们不能预言宇宙应如何运行。有人也许会认为,如果不可预见性只发生在大爆炸处,那不会太碍事,那毕竟是一百亿或二百亿年以前的事。但是,如果可预言性在大爆炸的非常强引力场中失效,那么只要恒星坍缩它也会失效。这种事件仅在我们的银河系中每周就会发生几次。我们的预言能力甚至按照天气预报的标准来说也是非常差劲的。
当然,人们还会说,我们根本不必在乎发生在一颗遥远恒星处的可预言性的失效。然而,在量子理论中任何不被实际上禁止的东西都能够并将要发生。这样,如果可能历史的种类中包括奇性空间的话,这些奇性可在任何地方发生,而不仅在大爆炸处以及坍缩星之中。这意味着,我们不能预言任何东西。反过来说,我们能够预言事件的这一事实是反对奇性并赞同无边界设想的实验证据。
那么无边界设想为宇宙做出什么预言呢?第一个预言是,因为宇宙的怕有可能的历史在广延上都是有限的,所以人们用来作为时间测度的任何量都必须有一个最大值和一个最小值。这样宇宙就有一个开端和一个终结。在实时间中的开端即是大爆炸奇点。然而在虚时间中这个开端就不再是奇点。相反的,它有点像地球的北极。如果人们把地球表面的纬度当作时间的类似物,则可以说地球的表面从北极开始。然而,北极是地球上完全普通的一点。它没有任何特殊之处,同样的定律在北极正如同在地球上的其他地方同样地成立。类似的,我们用来标志作撛谛槭奔淠谟钪娴钠羰紨的事件是时空中的一个通常的点,正如其他的点那样。科学定律在开端处正如在其他地方一样成立。
人们从和地球表面的类比,也许会预料到,正如北极和南极相似一样,宇宙的终结会和开端相类似。然而,北南二极是对应于虚时间向实时间延拓,就会发现宇宙在实时间中的开端和它的终结可以非常不同。
约纳逊·哈里威尔和我对无边界条件的含义作过一个近似计算。我们把宇宙当作一个完全光滑和均匀的背景来处理,在这个背景上存在密度的小微扰。宇宙在之前时间中从非常小的半径开始膨胀。最初的这种膨胀称作暴涨,也就是说,宇宙尺度在比一秒还要短暂非常多的每一时间间隔中得到加倍,这正如在某些国家中每一年价格都要加倍一样。第一次世界大战后的德国也许创下了通货膨胀的世界纪录,一捆面包的价格在几个月的时间内从一个马克涨到一百万马克。但是没有任何东西可与似乎在极早期宇宙发生过的暴涨相比拟,宇宙尺度在一秒的极微小的部分时间内至少增加了一百万亿亿亿倍。这当然是发生在当局政府之前的事。
暴涨在如下意义上来说,是件好事,它产生了一个在大尺度上光滑而均匀的宇宙,而且这个宇宙以刚好避免坍缩的临界速度膨胀。它还能在相当严格的意义上把宇宙的怕有内容从无中创生出来,这是暴涨的又一好处。当宇宙像北极那样的一个单独点时,它不包含有任何东西。然而,在我们可观测到的宇宙部分至少有十的八十次方颗粒子。所有这些粒子从何而来呢?其答案是,相对论和量子力学允许物质从能量中以粒子反粒子对的形式创生出来。那么能量又是从何而来以创生物质呢?其答案是,它是从宇宙的引力能中借来的。宇宙亏欠了极大数量的负引力能的债务,它刚好和物质的正能量相平衡。其结果便是凯恩斯经济学的胜利:一个充满物质的、充满活力的正在膨胀的宇宙。引力能的债务只有在宇宙终结时才能偿付清。
早期宇宙不能是完全均匀一致的,因为否则的话就会违反量子力学的不确定性原理。相反的,必须存在对均匀密度的一些偏差。无边界设想意味着,这些密度差别是从它们的基态开始,也就是说,它们是和不确定性原理相一尽可能的小。然而,这些差别在暴涨时被放大了。在暴涨时期结束之后,留下的宇宙是一些地方比另一些地方膨胀得稍快一些。在膨胀稍慢的区域,物质的引力吸引使膨胀进一步减慢。该区域最终会停止膨胀,并且收缩形成星系和恒星。这样,无边界设想可以解释我们四周看到的所有复杂结构。然而,它没有给宇宙作出单独的预言。相反地,它预言整整一族可能的历史,每一个历史都具有自己的概率。也许可能有这样的历史,工党在上次英国竞选中取胜,虽然这种概率很小。
无边界设想对于上商在宇宙事务中的作用含义极其深远。人们现在广泛接受,宇宙按照定义很好的定律演化。这些定律可能是上帝钦定的,但是它似乎不去干涉宇宙去违反这些定律。然而,直到不久以前,人们都认为这些定律不能适用于宇宙的开初。那就要依赖上帝去旋紧发条,并让宇宙顺着它的意愿的方式去运行。这样,宇宙的现状是上帝对初始条件选择的结果。
然而,如果某种像无边界设想的东西是正确的话,则情况就会大大改观。在那种情形下,物理定律甚至也适用于宇宙的开端,这样上帝就没有选取初始条件的自由。当然它在选取宇宙要服从的定律上仍然具有自由。然而,这里并没有许多选择的余地。也许只存在很少数目的定律,这些定律是自洽的,并能导致像我们自己这么复杂的生物的存在,他能询问什么是上帝的性质。
甚至即使只存在唯一的一族可能的定律,它也只不过是一族方程。究竟是什么东西将生命之火赋予这些方程,使之产生一个受它们制约的宇宙呢?难道终结的统一理论是如此之咄咄逼人,以至于其自身的实现成为不可避免?虽然科学能解决宇宙如何启始的课题,它仍然无法回答这个问题:为何宇宙必须存在?我对此没有答案。
宇宙本源是什么?
我们的世界(宇宙)本源应该是空间。我不用“宇宙”这个词语,是为了避免误会。因为宇宙本意是古往今来,四面八方万事万物的统称,一般人理解也就是包罗所有事物。我们的世界构成基础应该是空间,(个人理解)世界形成之初首先诞生的是空间或者也可以称之为“场”,随后不同性质空间(刚诞生时应该有两种性质)相互组合产生组成物质的基础粒子与基础粒子存在的空间(宇宙范围),经过衍化形成现在的宇宙。场具有不均衡性,有势能存在,因此,宇宙空间并非是均匀的,是有强弱的,光速也不是30万公里每秒固定数字,30万这个数字只是靠近地球附近的运行速度,而且,光在宇宙中也并非直线运行,它的方向会受宇宙空间强度影响,如果观测距离足够大的话,应该是可以验证这一点的。
以上或许很难理解,举个简单例子:网络产生后,网络世界越来越丰富,相信不久之后,网络世界能够产生部分智能程序,诞生自我意识,能够自我学习、生存、繁殖,并形成它特定的生存环境,并具有其特定的社会性,成为了特定的世界体系。某一天,某个程序问:我们世界本源是什么?你就可以告诉它:是数据。或更直接一点:是0和1。我们就是他们眼里的创世神。
通过以上例子,我们可以认为,我们是空间型宇宙,支撑体系应该是能量。那么有没有其他形态的生命活动形态呢?我认为,是有可能的,或许在没有空间尺度宇宙以能量波动频率的组合或其他未知方式也可以诞生生命世界吧。
构成宇宙的最基本物质是什么?
宇宙大约是由4.9%的普通物质,26.8%的暗物质和68.3%的暗能量构成。基本粒子指人们认知的构成物质的最小最基本的单位。
一般认为,宇宙产生于140亿年前一次大爆炸中。大爆炸后,分子碰撞,并产生光、热。大爆炸后30亿年宇宙,最初的物质涟漪出现。大爆炸后20亿~30亿年,类星体逐渐形成。大爆炸后100亿年,太阳诞生。38亿年前地球上的生命开始逐渐演化。
大爆炸散发的物质在太空中漂游,由许多恒星组成的巨大的星系就是由这些物质构成的,我们的太阳就是这无数恒星中的一颗。原本人们想象宇宙会因引力而不再膨胀,但是,科学家已发现宇宙中有一种 “暗能量”会产生一种斥力而加速宇宙的膨胀。相对的,还有“暗物质”有巨大的吸引力。
大爆炸后的膨胀过程是一种引力和斥力之争,爆炸产生的动力是一种斥力,它使宇宙中的天体不断远离;天体间又存在万有引力,它会阻止天体远离,甚至力图使其互相靠近。引力的大小与天体的质量有关,因而大爆炸后宇宙的最终归宿是不断膨胀,还是最终会停止膨胀并反过来收缩变小,这完全取决于宇宙中物质密度的大小。
宇宙有多大,宇宙外面是什么
宇宙外面是什么?宇宙到底有多大?相信很多人都曾经试图找到这个问题的答案,事实上物理学家们研究宇宙已经很久了。宇宙之外是什么样子还是未知数。相信看完下面的内容,或许对于您找到答案有所帮助。首先我们要知道什么是宇宙,宇宙是万物的总称,是时间和空间的统一。宇宙是物质世界,不依赖于人的意志而客观存在,并处于不断运动和发展中,在时间上没有开始没有结束,在空间上没有边界没有尽头。宇宙是多样又统一的;多样在物质表现状态的多样性;统一在于其物质性。宇宙是由空间、时间、物质和能量,所构成的统一体。宇宙起源是一个极其复杂的问题。 宇宙是物质世界,它处于不断的运动和发展中。千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。直到今天,许多科学家认为,宇宙是由大约137亿年前发生的一次大爆炸形成的。宇宙内的所存物质和能量都聚集到了一起,并浓缩成很小的体积,温度极高,密度极大,瞬间产生巨大压力,之后发生了大爆炸,这次大爆炸的反应原理被物理学家们称为量子物理。大爆炸使物质四散出去,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命。哈勃体积之外我们可以在某些方面肯定的说宇宙之外是更多的宇宙。天文学家认为太空是无限的,宇宙之外的空间也和可观测到的宇宙一样充满了能量、星系等等存在。如果真的是这样,那么宇宙之外的存在些什么变成了一个非常奇怪的问题。在哈勃体积之外,你不仅仅会发现更多不重样的行星——看见任何东西都有可能(小编:看到42)。没错,任何东西。如果你看的够远你会看见另一个宇宙的你,他今天早饭没有吃鸡蛋而是吃的燕麦粥,你会看见另一个不吃早饭的你,你会看见一个天没亮就爬起来抢银行的你。实际上,宇宙论者认为如果你观测地足够远,你会进入另一个哈勃体积——一个完美复刻版的我们生活的宇宙。在10188米之外的另一个宇宙里有一个和你完全相同的人做着和你完全相同的事情。听上去不太可能,但是无限这个概念比无限本身还要更加无限。[page]暗流星系团2008年天文学家发现宇宙中成团的物质好像正在以极高的速度朝着同一个方向运动,这个现象用可见宇宙中的任何引力模式都无法进行解释。速度达到每小时2百万英里(321.8万公里)。2010年的新进观测结果确认了这种现象——暗流。这种物质的运动过程挑战了所有对大爆炸后宇宙整体物质分布的预测。可能的原因之一:哈勃体积之外的巨大质量结构产生的引力对本宇宙的影响结果。这意味着在我们观测范围之外的无限宇宙中存在着不可确定的构造。这些构造可能以任何形态出现,有可能是一大块物质和能量的结合体,其体量之大超乎人类想象,也有可能是其他宇宙来的奇怪弯曲漏斗状引力。宇宙是无限多的泡泡说到底哈勃体积之外的宇宙还是宇宙,只是我们看不到。这些地方和我们观测到的宇宙遵循同样的物理规律和各种常量。宇宙大爆炸后,宇宙就在不断膨胀,膨胀中会导致太空中产生泡泡。每个泡泡里面都是停止膨胀的宇宙,每个泡泡里面都有各自的物理法则。这种理论认为宇宙无限,泡沫本身也是无限(你可以在某个无穷集合中挑一个无穷数,还是包含于这个无穷集合)。即便你能逃出泡泡的边界,泡泡外的宇宙空间依然在膨胀,无论你以多块的速度追赶你都无法探索到其它的泡泡。[page]黑洞产卵宇宙论物理学家Lee Smolin提出过一种新的理论,他认为我们宇宙中的每个黑洞都会创造一个新的宇宙。而每一个新的宇宙的物理定律又和之前的宇宙有些许不同。Smolin提出了一种自然选择的宇宙论,如果某些物理法则可更频繁地生成黑洞,就能创造更多宇宙。同时没有黑洞形成的宇宙只能等死。有许多平行宇宙关于平行宇宙的理论就太多了,目前接受程度最高的几种理论中,有一种是弦理论的进化版本:认为有几层膜在其它维度震动。简单的说这些涟漪一样的在11维度震动的膜就是我们的宇宙之外的其它宇宙。涟漪运动效应可以帮助解释已观测宇宙的物质分布。这种理论认为重力之所以特殊的原因是重力是从其它维度中的其它宇宙泄露到我们这个维度的这个宇宙的。(这也能解释为什么重力相较其它基本力如此微弱)。宇宙有多大? 想要了解宇宙究竟有多大,请你试着将一枚硬币放在你的面前。假设这枚小小的硬币就是我们的太阳,那么另一颗代表距离太阳最近的恒星:比邻星的硬币就应当放在大约563公里之外。对于生活在中国的读者而言,比如上海的读者,这第二枚硬币几乎要摆放到山东或安徽省境内,而对于一些小国的居民而言,这颗硬币可能都已经放到外国去了。[page]而这仅仅是太阳和距离它最近的一颗恒星而已。当你试图模拟更大范围内的宇宙空间时,就会麻烦的多了。比方说,相对于你的那颗硬币太阳,银河系的直径将是大约1200万公里,这相当于地月距离的30倍。正如你所看到的,宇宙的尺度是惊人的,几乎没有办法用我们生活中所熟知的距离尺度加以衡量。但这并不意味着人类丈量宇宙的梦想是遥不可及的。天文学家在长期的工作研究中已经找到一些行之有效的方法去测量宇宙的尺度。以下我们将向你呈现有关的内容:1 宇宙的尺度宇宙的尺度我们并非居于宇宙的中心,但是我们确实居于可观测宇宙的中心,这是一个直径约为930亿光年的球体这个星球上没有人知道宇宙究竟有多大。它或许是无限的,也或许它确实拥有某种边界,也就是说如果你旅行的时间足够长,你最终将回到你出发的地方,就像在地球上那样,类似在一个球体的表面旅行。科学家们对于宇宙具体的形状和大小数据存在分歧,但是至少对于一点他们可以进行非常精确的计算,那就是我们可以看得多远。真空中的光速是一个定值,那么由于宇宙自诞生以来大约为137亿年,这是否就意味着我们最远只能看到137亿光年远的地方呢?答案是错误的。有关这个宇宙的最奇特性质之一便是:它是不断膨胀的。并且这种膨胀几乎可以以任何速度进行——甚至超过光速。这就意味着我们所能观测到的最远的天体事实上远比它们实际来的近。随着时间流逝,由于宇宙的整体膨胀,所有的星系将离我们越来越远,直到最终留给我们一个一片空寂的空间。奇异的是,这样的结果是我们的观测能力事实上被“强化”了,事实上我们所能观察到最遥远的星系距离我们的距离达到了460亿光年。我们并非居于宇宙的中心,但是我们确实居于可观测宇宙的中心,这是一个直径约为930亿光年的球体。[page]2 充斥着星系这张照片是美国宇航局哈勃空间望远镜获得的最深邃的影像之一这是美国宇航局哈勃空间望远镜获得的最深邃的影像之一这张照片是美国宇航局哈勃空间望远镜获得的最深邃的影像之一。科学家们让哈勃望远镜对准天空中的一小块区域进行长时间的曝光——长达数月,尽可能地捕获每一个暗弱的光点。文中上图是局部的放大,完整的图像是下面这幅图,其中包含有1万个星系,从局部放大图中,你可以看到一些星系的细节。完整的图像完整的图像当你看着这些遥远的星系,你可能没有意识到自己正在遥望遥远的过去,你所看到的这些星系都是它们在130亿年前的样子,那几乎是时间的尽头。如果你更喜欢空间的描述,那么这些星系离开我们的距离是300亿光年。宇宙处于不断的膨胀之中,但与此同时科学家们对于宇宙尺度的测量精度也在不断提高。他们很快找到了一种绝佳的描述宇宙中遥远天体距离的方法。由于宇宙在膨胀,在宇宙中传播的光线的波长将被拉伸,就像橡皮筋被拉长一样。光是一种电磁波,对于它而言,波长变长意味着向波谱中的红光波段靠近。于是天文学家们使用“红移”一词来描述天体的距离,简单的说,就是描述光束从天体发出之后在空间中经历了多大程度的膨胀拉伸。一个天体的距离越远,当然它在传播的过程中光波波长被拉伸的幅度越大,光线也就越红。如果使用这种描述方法,那么你可以说这些遥远的星系的距离大约是红移值Z=7.9,天文学家们立刻就会明白你所说的距离尺度。[page]3 最遥远的天体最遥远的天体最遥远的天体这张图像中间部位那个不太显眼的红色模糊光点事实上是一个星系,这是人类迄今所观测到的最遥远天体。美国宇航局哈勃空间望远镜拍摄了这张照片,这一星系存在的时期距离宇宙大爆炸仅有4.8亿年。这一星系的红移值约为10,这相当于距离地球315亿光年。看起来这一星系似乎非常孤单,在它的周围没有发现与它同时期的星系存在。这和大爆炸之后大约6.5亿年时的情景形成鲜明对比,在那一时期,天文学家们已经找到大约60个星系。这说明尽管这短短2亿年对于宇宙而言仅仅是一眨眼的功夫,但是正是在这一短暂的时期内,小型星系大量聚合形成了大型的星系。但是这里需要指出的是,天文学家们目前尚未能完全确认这一天体的距离数值,这也就意味着其实际距离可能要比现在所认为的更近。在美国宇航局的下一代詹姆斯·韦伯空间望远镜发射升空以替代哈勃望远镜之前,科学家们都将不得不在数据不足的情况下进行估算。[page]4 最遥远的距离最遥远的距离最遥远的距离天文学家能够观测到的最遥远的光线名为“宇宙微波背景辐射”(CMB)。这是抵达地球的最古老的光子,它们几乎诞生于宇宙大爆炸发生的时刻。在大爆炸发生后的短时间内,宇宙非常小,因此相当拥挤,物质太过稠密,以至于光线无法长距离传播。但在宇宙诞生之后大约38万年之后,宇宙已经变得足够大,光线第一次可以自由地传播。这时发出的光是我们今天所能观测到的最古老的光线,是宇宙的第一缕曙光;它存在于宇宙的每一个方向,无论你把望远镜指向哪个方向,都可以观测到它的存在。宇宙微波背景辐射就像一堵墙,我们最远也只能看到墙这一侧的风景,但是却绝无办法穿墙而过。那么这些最初的宇宙之光怎么变成微波了呢?这还是因为宇宙的膨胀。随着宇宙的膨胀,当时发出的光波波长被逐渐拉长,经历如此久远的时间(137亿年),它们的波长已经被拉伸到了不可思议的程度。随着宇宙膨胀冷却,现在这一辐射的剩余温度大约仅有-270摄氏度,也就是著名的3K背景辐射。这种辐射的分布显示出惊人地各向同性,各处的差异小于10万分之一。而如果有朝一日人类终于能够制造出高灵敏度的中微子探测器,那么我们将终于可以突破宇宙微波背景辐射设置的那堵墙,而看到其背后中微子出现时的情景,即所谓的“宇宙中微子背景”。和光子不同,对中微子而言,一般意义上的物质几乎是透明的,它们可以轻而易举地穿过地球,穿过太阳,甚至穿过整个宇宙。正是因为这一特征,一旦我们能够解码中微子中携带的信息,我们将能回溯到宇宙大爆炸之后仅数秒时的情景。[page]5 星系蝴蝶图星系蝴蝶图星系蝴蝶图天文学家们向宇宙张望,他们注意到宇宙中的星系分布并非呈现随机状态,由于引力的作用,星系倾向于相互接近,从而形成规模巨大的聚合体,如星系团,超星系团,大尺度片状结构乃至所谓的巨壁。天文学家们开始着手纪录这些星系在三维空间中的位置,他们很快成功地制作出较近距离范围内星系的三维分布图,这是一项令人惊叹的成就。大部分此类巡天观察都将注意力集中在距离地球70亿光年之内的范围,但他们在此过程中也发现了许多类星体,这是宇宙中亮度惊人的奇特天体,来自早期宇宙,其距离可能是70亿光年范围的4倍以上。在全部这些努力中,斯隆数字巡天(SDSS)可能算是规模最大的一个。参与这一项目的天文学家们目前已经基本完成对1/3天空的巡天观察,并在此过程中记录下超过5亿个天体的精确位置信息。而本文此处的配图则来自另一项巡天计划:6dF星系巡天,这是目前规模位居第三的巡天项目。这张图像中之所以会缺失很多地方,是因为银河系的阻挡,很多天区我们都无法进行观测。[page]6 邻近的超星系团邻近的超星系团邻近的超星系团在距离地球比较近的空间内,天文学家们的了解相对而言就会多一些。我们现在知道在距离地球约10亿光年的距离内存在一个超星系团的海洋。这些是被引力作用聚集在一起的大量成员星系。我们的银河系本身是室女座超星系团的成员,这个超星系团正位于这张图像中中央位置。在这个巨大的超星系团结构中,我们的银河系毫无特别之处,它只是位于一隅之地的普通成员星系而已。在这一宏伟结构中占据统治地位的是室女座星系团,这是一个由超过1300个成员星系组成的庞大集团,其直径超过5400万光年。另一个超星系团很值得关注,那就是后发座超星系团,因为它的位置恰好位于北方巨壁(Northern Great Wall)的中心位置。北方巨壁是一个大到令人难以想象的巨型结构,其直径约有5亿光年,宽度约3亿光年。我们星系“附近”最大的超星系团是时钟座超星系团,其直径超过5亿光年。[page]7 暗物质和暗能量暗物质和暗能量暗物质和暗能量这个宇宙另外一件令人吃惊的事实是:占据宇宙大部分的成分我们却完全看不到。暗物质是一种神秘的存在,科学家们认为它们遍布宇宙各处,但是我们却看不到也摸不着。它们和光以及任何种类的电磁波都不发生作用,而这正是人类赖以探测宇宙的基础工具。不过它会产生引力,通过它对周遭空间施加的引力效应,科学家们能够感受到它们的存在。是的,我们能够感觉到暗物质确实存在。比如我们所在的室女座超星系团大约拥有10的15次方倍太阳质量,但是整个超星系团的光度却仅有太阳的3万亿倍。这就意味着室女座超星系团的光度相比其质量所应当拥有的光度小了约300倍。这样的事实是难以解释的,但是如果考虑到这其中遍布大量拥有质量但却不发光的暗物质,一切也就不奇怪了。事实上,根据计算结果,宇宙中的暗物质含量是我们平常所见的普通物质的5倍。但是暗物质尽管强大,却仍然不足以统治宇宙。真正支配着我们这个宇宙的力量来自另一种神秘物质:暗能量。普通物质和暗物质有一个共同点,那就是它们都拥有质量,并向周围空间施加引力影响,换句话说,它们的作用是让物质聚拢,让宇宙减速膨胀甚至最终收缩。然而,当科学家们观测宇宙,试图分辨出宇宙究竟是在减速膨胀还是在收缩时,他们惊骇地发现事实完全出乎他们的预料——宇宙根本没有收缩或减速,它正在加速膨胀!毫无疑问,存在一种未知的强大到异乎寻常的力量,它不但独力抵抗了整个宇宙中所有普通物质和暗物质产生的引力作用,甚至还推动整个宇宙加速膨胀。对于暗能量的发现最近刚刚被授予了今年的诺贝尔物理学奖,但是尽管有了这样的巨大进展,科学家们对于究竟什么是暗能量却依旧毫无头绪,一无所知。现在有关这一课题的理论几乎就相当于“虚位以待”,等待着未来出现一个更加完美的理论能摘取成功解释暗能量本质的桂冠。[page]8 宇宙之网宇宙之网宇宙之网星系巡天的结果显示我们的宇宙似乎显示一种“泡沫网状”结构。几乎所有的星系都分布在狭窄的“纤维带”上,而在它们的中间则是巨大的空洞,天文学上称为“巨洞”。这些巨洞的体积巨大,有些直径可达3亿光年,其中几乎空无一物。但是这样说并不正确,因为尽管我们看上去那里确实是什么也没有,但实际上这里充斥着暗物质。这里这张图是一份计算机模拟结果,它显示我们的宇宙呈现一种纤维网状结构,其中分布着节点,纤维带和层。这种复杂结构的起源来自宇宙微波背景辐射中微小的涟漪,这是其中密度微小变化的体现。随着宇宙膨胀,这些微小的高密度区去逐渐吸引更多的物质向其聚集,这种效应持续上百亿年,其结果是惊人的——它造就了我们今天所见的宇宙。[page]9 检验宇宙模型检验宇宙模型检验宇宙模型2005年,一个国际天文学家小组试图检验现有的宇宙学理论是否正确。他们进行了一项名为“千年运行”的模拟计划,在计算机中他们模拟100亿个粒子在一个边长为20亿光年的立方体空间中,按照我们现有的理论去作用于它们,是否能得到某种我们所预期的结果。这项模拟实验中考虑了普通物质,暗物质和暗能量因素,成功地再现出宇宙从混沌逐渐显现类似于我们今天所观察到的宇宙大尺度结构。在模拟运行的过程中,研究人员们目睹了宇宙中大质量黑洞的出现,强大的类星体发出剧烈的辐射,模拟的结果中还出现了大约2000万个星系。正如文中此处展示的那样,研究人员们发现模拟的结果产生出一个和我们所观察到的现实宇宙非常相似的状态。
宇宙本源是什么?
是无极。无极生太极,太极生两仪,两仪生四象,四象生八卦。世间万事万物都在这八八六十四卦中,运化成住坏死。道生一,一生二,二生三,三生万物。道就是本源。l老子说;视之不见,名曰夷;听之不闻,名曰希;搏之不得,名曰微。此三者不可致诘,故混而为一。其上不□,其下不昧。绳绳兮不可名,复归于物。是谓无状之状,无物之象,是谓惚恍。迎之不见其首,随之不见其后。 执古之道,以御今之有。能知古始,是谓道纪。【译文】看它看不见,就叫"夷";听它听不到,就叫"希";捉它捉不着,就叫"微"。从这三方面不可以加以探究,所以是浑融无名的元始。居于其上的本源已不清楚,由它而下的现实世界是清晰具体的。它本身渺渺茫茫,无以名状,不同于现实的具体存在。这就叫做没有确定形状的形状,不可归结于具体组分的显象,它是不确定性的表征。围绕着它团团转,我们永远也搞不清它的模样。 宇宙本源其大无外其小无内。前不见首后不见尾。
宇宙的本源到底是什么?
宇宙即我,我即宇宙。同学,这并不是霸气,这句话是说宇宙是人类自己凭空臆想出来的一种对世界的认识,宇宙的本源在你的内心。
从物理学的角度来讲,宇宙是一个球体,各个天体在他的表面,并造成空间扭曲,产生引力,宇宙的外面是另一个宇宙,宇宙由一个奇点的大爆炸开始,由一个大压缩回到一个奇点而结束,周而复始,永不停息。
我以为,走科学这条路永远探寻不到宇宙的本源,因为你发现了一个总会问:你新发现的这个又是怎么来的?
为什么探寻不到?因为宇宙压根就没有所谓的“本源”!!!这个本源就在你的内心!!!宇宙即我,我即宇宙。
关于宇宙的起源,除了大爆炸假说还有什么新的观点?
自从我们有能力走出地球之后,有太多的疑问在我们心中了,人类在地球上到底是从何而来的?地球又是如何诞生的?在整个宇宙的大环境当中,是否有除了人类之外的其他高级智慧生命体呢?这些问题的答案在短时间内,我们都无法给出解答,因为现在人类的文明发展等级太低了,我们无法有更为确切的证据来证明这一切问题的答案。1目前人类对宇宙是如何形成的,也有各种各样的猜测,在科学界最为流行的说法,宇宙的产生是由于宇宙大爆炸而来的,在这个理论当中认为整个宇宙的诞生是起源于一场大爆炸,而在大爆炸之前的宇宙是一个奇点,那么奇点是什么呢?所谓的奇点就是一个密度无限大,空间无限小热量无限高,并且时空曲率无限的一个奇异的点。而这个奇点大爆炸才是整个宇宙的开始。2这种猜测也并不是毫无根据的,因为在近几年的研究过程中,科学家发现在宇宙当中有宇宙微波辐射的存在,而这些宇宙微波,是由于138亿年前的宇宙大爆炸所产生的,现在的微波辐射都是当时所残存下来的能量。在没有更加有说服力的证据和理论之前,宇宙大爆炸理论成为了解释宇宙来源的最权威的说法。3在近几日牛津大学的教授发表了一篇论文,他认为宇宙的产生并不是来源于宇宙大爆炸,在大爆炸之前其实宇宙就已经存在了,而这场大爆炸的出现改变了整个宇宙的状态,比如物质的形态以及形成了各种各样的天体,而他认为宇宙的形成除了大爆炸的理论之外,更为准确的应该是宇宙顶级文明的形成。4就像是人类经过了几百万年的发展,成为了0.73级文明,牛津大学的教授认为,只要我们有足够的时间,一个文明就可以从最低级的文明发展成为宇宙高级文明。同时他还提出了平行宇宙的理论,在整个宇宙的空间当中并非只有我们所生存的宇宙这一个。宇宙和宇宙之间各不打扰,平行存在,就像是地球上的各个国家一样有发达和落后之分,而人类就处于相对发展比较落后的宇宙当中。5而我们所苦苦寻找的高级文明,它位于宇宙的更高维度,所以人类在近一个世纪的寻找过程中也无法发现它们的存在,我们没有能力进入更高维度的空间生活。很多人认为,这都是一些不切实际的理论,而在整个科学发展的过程当中有猜想才会有进步,