阈值分割

时间:2024-06-02 22:22:01编辑:分享君

2.直方图阈值化方法进行图像分割的适用范围是什么?有什么局限性?如何克服这些局限性?

常用方法有:
1)
以区域为对象进行分割,以相似性原则作为分割的依据,即可根据图像的灰度、色彩、变换关系等方面的特征相似来划分图像的子区域,并将各像素划归到相应物体或区域的像素聚类方法,即区域法;
2)
以物体边界为对象进行分割,通过直接确定区域间的边界来实现分割;
3)
先检测边缘像素,再将边缘像素连接起来构成边界形成分割。
具体的阈值分割:
阈值分割方法分为以下3类:
1)
全局阈值:T=T[p(x,y)〕,即仅根据f(x,y)来选取阈值,阈值仅与各个图像像素的本身性质有关。
2)
局部阈值:T=T[f(x,y),p(x,y)],阈值与图像像素的本身性质和局部区域性质相关。
3)
动态阈值:T=T[x,y,f(x,y),p(x,y)],阈值与像素坐标,图像像素的本身性质和局部区域性质相关。
全局阈值对整幅图像仅设置一个分割阈值,通常在图像不太复杂、灰度分布较集中的情况下采用;局部阈值则将图像划分为若干个子图像,并对每个子图像设定局部阈值;动态阈值是根据空间信息和灰度信息确定。局部阈值分割法虽然能改善分割效果,但存在几个缺点:
1)
每幅子图像的尺寸不能太小,否则统计出的结果无意义。
2)
每幅图像的分割是任意的,如果有一幅子图像正好落在目标区域或背景区域,而根据统计结果对其进行分割,也许会产生更差的结果。
3)
局部阈值法对每一幅子图像都要进行统计,速度慢,难以适应实时性的要求。
全局阈值分割方法在图像处理中应用比较多,它在整幅图像内采用固定的阈值分割图像。考虑到全局阈值分割方法应用的广泛性,本文所着重讨论的就是全局阈值分割方法中的直方图双峰法和基于遗传算法的最大类间方差法。在本节中,将重点讨论灰度直方图双峰法,最大类间方差法以及基于遗传算法的最大类间方差法留待下章做继续深入地讨论。


阈值分割的概述

图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。它特别适用于目标和背景占据不同灰度级范围的图像。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。图像阈值化的目的是要按照灰度级,对像素集合进行一个划分,得到的每个子集形成一个与现实景物相对应的区域,各个区域内部具有一致的属性,而相邻区域不具有这种一致属性。这样的划分可以通过从灰度级出发选取一个或多个阈值来实现。基本原理是:通过设定不同的特征阈值,把图像象素点分为若干类。常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。设原始图像为f(x,y),按照一定的准则f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图像为:若取:b0=0(黑),b1=1(白),即为我们通常所说的图像二值化。

图像分割最好方法

1.基于阈值的分割方法阈值法的基本思想是基于图像的灰度特征来计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值作比较,最后将像素根据比较结果分到合适的类别中。因此,该方法最为关键的一步就是按照某个准则函数来求解最佳灰度阈值。阈值法特别适用于目标和背景占据不同灰度级范围的图。图像若只有目标和背景两大类,那么只需要选取一个阈值进行分割,此方法成为单阈值分割;但是如果图像中有多个目标需要提取,单一阈值的分割就会出现作物,在这种情况下就需要选取多个阈值将每个目标分隔开,这种分割方法相应的成为多阈值分割。2.基于区域的图像分割方法基于区域的分割方法是以直接寻找区域为基础的分割技术,基于区域提取方法有两种基本形式:一种是区域生长,从单个像素出发,逐步合并以形成所需要的分割区域;另一种是从全局出发,逐步切割至所需的分割区域。分水岭算法分水岭算法是一个非常好理解的算法,它根据分水岭的构成来考虑图像的分割,现实中我们可以想象成有山和湖的景象,那么一定是水绕山山围水的景象。分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。


阈值法图像分割研究有哪些方向

主要是三类
1) 基于点的全局阈值方法;
2) 基于区域的全局阈值方法
3) 局部阈值方法和多阈值方法
1)基于点的全局阈值方法
p-分位数法
1962年Doyle提出的p-分位数法是最古老的一种阈值选取方法
迭代方法选取阈值
初始阈值选取为图像的平均灰度T0,然后用T0将图像的象素点分作两部分,计算两部分各自的平均灰度,小于T0的部分为TA,大于T0的部分为TB,将T1 作为新的全局阈值代替T0,重复以上过程,如此迭代,直至TK 收敛
直方图凹面分析法
最大类间方差法
熵方法
最小误差阈值
矩量保持法
模糊集方法
2) 基于区域的全局阈值方法
二维熵阈值分割方法
简单统计法
直方图变化法
松弛法
3) 局部阈值方法和多阈值方法
局部阈值(动态阈值)
阈值插值法
水线阈值算法
多阈值法 基于小波的多域值方法 基于边界点的递归多域值方法 均衡对比度递归多域值方法


图像分割算法那么多 如何正确的使用适合的算法

从学术角度讲图像分割主要分成3大类,一是基于边缘的,二是基于区域的,三是基于纹理的。由于基于纹理的也可以看成是基于区域的,所以有些专家也把分割方法分成基于边缘和基于区域两大类。选择算法的时候主要参考你要分割的图像样本的特点。如果图像的边界特别分明,比如绿叶和红花,在边界处红绿明显不同,可以精确提取到边界,这时候用基于边缘的方法就可行。但如果是像医学图像一样,轮廓不是特别明显,比如心脏图像,左心房和左心室颜色比较接近,它们之间的隔膜仅仅是颜色比它们深一些,但是色彩上来说很接近,这时候用基于边缘的方法就不合适了,用基于区域的方法更好。再比如带纹理的图像,例如条纹衫,如果用基于边缘的方法很可能就把每一条纹都分割成一个物体,但实际上衣服是一个整体,这时候用基于纹理的方法就能把纹理相同或相似的区域分成一个整体。不过总体来说,基于区域的方法近些年更热一些,如Meanshift分割方法、测地线活动轮廓模型、JSEG等。


matlab彩色图像的阈值分割

阈值分割就是针对灰度图像的,通过设定一个阈值可以在分割后达到二值化的效果。对彩色图像进行阈值分割,当然也是转成灰度图后进行分割了。假如你对各个颜色分量分别进行阈值化,我给你试了试a=imread('a.jpg');[m,n,d]=size(a);threshold=90;for i=1:m for j=1:n for k=1:3 if a(i,j,k)>90 a(i,j,k)=255; else a(i,j,k)=0; end end endenda_origin=a;a(:,:,2)=0;a(:,:,3)=0;subplot(121),imshow(a);subplot(122),imshow(a_origin);效果就是,单个颜色分量的可以阈值分割,但是一起分割就效果不理想了

MATLAB采用基本的全局阈值化的方法,实现对图像的阈值分割。,不用工具箱,,急!!!!

一种能基于图像数据自动地选择阈值的算法:

(1)选择全局阈值的初始估计值T和参数△T。参数△T用于控制迭代次数.
(2) 用T分割图像。这会产生两组像素:G1由所有灰度值大于T的像素组成,G2由所有灰度值小于等于T的像素组成。

(3) 分别计算G1、G2区域内的平均灰度值m1和m2。

(4) 计算出新的阈值: T=(m1+m2)/2

(5) 重复步骤(2)~(4),直到在连续的重复中,T的差异比预先设定的参数△T小为止。

(6) 使用函数im2bw分割图像:

g = im2bw(f, T/den)

den是整数(8比特图像为255)


上一篇:intel cpu 系列

下一篇:存储卡被写保护