等比数列公式全部是什么?
等比数列全部公式:(1)等比数列的通项公式是:An=A1×q^(n-1)。若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。(2) 任意两项am,an的关系为an=am·q^(n-m)。(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}。(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。(5)等比求和:Sn=a1+a2+a3+.......+an。①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)。②当q=1时, Sn=n×a1(q=1)。记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1。
等比数列常用公式是什么?
公式:q≠1时,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)。q=1时,Sn=na1。(a1为首项,an为第n项,q为等比)。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。特殊性质:①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq。②在等比数列中,依次每k项之和仍成等比数列;等比数列的特殊性质。③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2。④ 若G是a、b的等比中项,则G^2=ab(G ≠ 0)。⑤在等比数列中,首项a1与公比q都不为零。注意:上述公式中an表示等比数列的第n项。