对勾函数图像怎么画
对勾函数,又称之为耐克函数,是一种类似于反比例函数的一般双曲函数,形如y=ax+b/x的函数,我们令a>0,b>0。工具/原料:纸、笔1、增减性:该函数在大于1和小于-1的范围都是单调递增,在0<x<1,-1<x<0的范围内都是单调递减。2、奇偶性,该函数是奇函数。3、注意a>0,b>0,此时和y=x+1/x一样,都是奇函数。
对勾函数图像怎么画?
如下图所示。对勾函数是一种类似于反比例函数的一般双曲函数,是形如f(x)=ax+b/x(a×b>0)的函数。由图像得名,又被称为“双勾函数”、“勾函数”、"对号函数"、“双飞燕函数”等。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
对勾函数最值公式
对勾函数最值公式是x+a/x>=2√(x*a/x)=2√a故f(x)的最小值为2√a。对于f(x)=x+a/x这样的形式(“√a”就是“根号下a”)当x>0时,有最小值,为f(√a)当x=2√ab[a,b都不为负])比如:当x>0是f(x)有最小值。对勾函数是一种类似于反比例函数的一般双曲函数,由图像得名,又被称为“双勾函数”、“勾函数”、“对号函数”、“双飞燕函数”等。常见a=b=1。定义域为(-∞,0)∪(0,+∞)值域为(-∞,-2√ab]∪[2√ab,+∞)当x>0,有x=根号b/根号a,有最小值是2√ab当x
对勾函数是什么样的怎么求最值
对勾函数是一种类似于反比例函数的一般函数,所谓的对勾函数是形如f(x)=ax+b/x的函数,求最值时当x大于0,有x=√b/√a,有最小值是2√ab,当x小于0,有x=-√b/√a,有最大值是-2√ab。
对勾函数的图像是分别以y轴和y=ax为渐近线的两支曲线,且图像上任意一点到两条渐近线的距离之积恰为渐近线夹角的正弦值与|b|的乘积。对勾函数的图像是双曲线,实际上该图像是轴对称的,并可以通过双曲线的标准方程通过旋转角度得到。