数学建模求答案
线性规划模型.
设全时服务员:
9~12 + 13~17: x1 名
9~13 + 14~17: x2
半时服务员:
9~13: x3
10~14: x4
11~15: x5
12~16: x6
13~17: x7
目标函数: min{ 100(x1 + x2) + 40(x3 + x4 + x5 + x6 + x7) }
约束条件:
9~10时段不少于4:
x1 + x2 + x3 >=4;
10~11时段不少于3:
x1 + x2 + x3 + x4 >=3;
同理可一直写下去:
x1+x2+x3+x4+x5>=4;
x2+x3+x4+x5+x6>=6;
x1+x4+x5+x6+x7>=5;
x1+x2+x5+x6+x7>=6;
x1+x2+x6+x7>=8;
x1+x2+x7>=8;
另有半时服务员总数约束:
x3+x4+x5+x6+x7<=3.
再注意到这是整数规划,用mathematica运行下面语句:
LinearProgramming[{100, 100, 40, 40, 40, 40,
40}, {{1, 1, 1, 0, 0, 0, 0}, {1, 1, 1, 1, 0, 0, 0}, {1, 1, 1, 1, 1,
0, 0}, {0, 1, 1, 1, 1, 1, 0}, {1, 0, 0, 1, 1, 1, 1}, {1, 1, 0, 0,
1, 1, 1}, {1, 1, 0, 0, 0, 1, 1}, {1, 1, 0, 0, 0, 0, 1}, {0,
0, -1, -1, -1, -1, -1}}, {4, 3, 4, 6, 5, 6, 8,
8, -3}, Automatic, Integers]
结果为:
{3, 4, 0, 2, 0, 0, 1}
分别对应x1到x7的值.
数学建模 求答案
这个问题的等式关系是时间相等和路程相等。具体如下:
1.把除班长以外的学生分成四批,每批11人。
2.上午七点,班长和第一批11名学生上校车车,其余三批学生步行向目的地出发。行驶了x1小时,校车把第一批学生放下来往回开,第一批学生步行去目的地。校车往回开了x2小时与步行的三批学生相遇,载着第二批学生向目的地开去,剩下第三批第四批学生继续步行。校车行驶了x3小时把第二批学生放下来往回开,第二批学生步行去目的地。校车往回开了x4小时,遇到了第三批和第四批学生,载着第三批学生向目的地开去,第四批学生继续步行。校车行驶了x5小时把第三批学生放下来往回开,第三批学生步行去目的地。校车行驶了x6小时与第四批学生相遇,载着第四批学生经过x7小时到达目的地。此时,四批学生同时到达目的地。班长全程都在车上。
3.开始列方程(没兴趣可以直接看第5)
对于第一批学生,校车时间*校车速度+步行时间*步行速度=路程,得到70*x1+5*(x2+x3+x4+x5+x6+x7)=7.7;
同理第二、三、四批,分别为:70*x3+5*(x1+x2+x4+x5+x6+x7)=7.7;
70*x5+5*(x1+x2+x3+x4+x6+x7)=7.7;
70*x7+5*(x1+x2+x3+x4+x5+x6)=7.7;
4.校车返回途中与学生们相遇了三次。70*x1-70*x2=5*(x1+x2);
70*x3-70*x4=5*(x3+x4);
70*x5-70*x6=5*(x5+x6);
5.这7个方程互相独立,7个未知数,可求解(看着麻烦,其实很简单)。
6.实际上有更简单的思路,即每批学生同时出发,同时到达,除了坐车就在走路(忽略上下车时间),因此,每批学生的坐车时间和走路时间相等。也就是说每批学生坐校车的时间相等,即x1=x3=x5=x7;同时,校车返回遇到下一批学生的时间也相等,即x2=x4=x6=13/15*x1。这就大大简化了计算,即70x1+5*(3+13/15*3)x1=7.7,x1=11/140,总时间Σx=363/700
7.综上,最快31分钟7秒(363/700小时)大家同时到达。
希望你能满意,有错请指出!
数学建模论文题目怎么取
取数学建模论文题目取法如下:首先看论文首页的三要素:1.标题:基于xx模型的xx问题研究2.摘要:针对每一个问题分别阐述问题、方法、结果3.关键词其次看论文题目基本要求:简短精练、高度概括、准确得体、恰如其分;既要准确表达论文内容,恰当反映所研究的范围和深度;又要尽可能概括、精练,力求题目的字数较少。最后论文题目的字数一般不要超过20个字;当希望题目字数少与恰当反映论文内容发生冲突,可多用几个字表达准确。基于旅行商规划模型(方法)的碎纸片拼接复原问题(问题)研究基于利润最大化的奥运商业网点分布微观经济模型基于力学分析的系泊系统设计奥运场馆中临时商业网点设计中的数学模型化方法CT 系统参数标定及反投影重建成像拓展参加数学建模比赛的意义有利于培关学生综合解决问题的能力因为数学建模最后提交的成果是交一篇完整5论文,于大多数学生决说,款是第一次,已可么想高学生如何的数学知识用到实呀生活中的能力,提高学生合理利用网络道淘资料物能力,超是高学生的新意识和团队协作能力等,很名参委学生事后感收到团以合作能力对于建模比赛很重要,这对街后参加工作也会有很好的帮助。2有利干促迸高职数学课程的改革大多数学校的高职数学课还是采用软师在上面讲,学生在下面听的方法,殊不和对于高职生历言,他们不但听不懂,而目也不愿意听,这就促进教师要改进教学方法,最好的方法是在机房里上课,吉师把重要的理论思想教给学生之后,具体的计算方法可以让学生利用软件在电脑上操作,这样既提高了学生的学习兴趣,也提高了学生运用软件的能力。
数学建模论文摘要该怎么写?
学术堂来告诉你数学建模论文摘要该怎么写:
首先明确摘要要求:
您正在撰写的论文可能有特定的指导方针和要求,无论是发表在期刊上,还是在课堂上提交,还是工作项目的一部分。在开始写作之前,请参考你收到的要求或指南,以确定需要记住的重要问题。
其次摘要要自成体系
摘要仅仅是一个摘要吗?大多数情况下,摘要应该完全独立于你的论文。不要抄袭和粘贴正文中的内容,也就是不要直接引用自己的原文中的话,避免简单地从你写作的其他地方转述你自己的句子。用全新的词汇和短语写出你的摘要,做到精简与凝练的同时,保持它的趣味性和创新性。
接着寻找核心关键词
完成论文之后,试着用5-7个重要的词或短语作为摘要研究的关键。如果你的论文在期刊上发表了的话,人们能够在网上数据库中搜索摘要的核心内容,容易且快速找到你的论文。而且,这样一些关键性的词语,能够吸引人们的注意力。
然后避免无关内容
需要注意的是,摘要不能脱离正文,更不能与论文内容相矛盾。不要引用你在论文中没有提到的观点或研究,不要引用你在论文中不使用的材料,否则非常容易引起误导。
最后进行基本修改
摘要是一篇文章,和其他文章一样,应该在完成之前进行修改。检查它的语法和拼写错误,并确保它的格式正确。论文摘要不要列举例证,不讲研究过程,不用图表,不给化学结构式,也不要作自我评价。