大学物理试卷

时间:2024-09-02 08:59:09编辑:分享君

大学物理题目 急急急急

机械能守恒
m g L/2 = 1/2 1/3 m L^2 ω0^2
ω0 = √(3g/L) = 10 rad/s
角动量守恒
m' v0 L - 1/3 m L^2 ω0 = m' v L - 1/3 m L^2 ω
ω = 3 m' (v0 - v) / (m L) = 20 rad/s
附注:我的回答常常被“百度知道”判定为违反“回答规范”,但是我一直不知道哪里违规,也不知道对此问题的回答是否违规。


求大学物理下的期末考试试题

系 (院)

专 业


年级、班级

学 号

姓 名

衡阳师范学院2007年下学期
《大学物理》(二)期末考试试题B卷(答卷)

题 号 一 二 三 四 五 合 分 签 名
得 分
复 查


得分评卷人


一、单项选择题:(每小题3分,共30分)
1. 处于真空中的电流元 到P点的位矢为 ,则 在P点产生的磁感应强度为 ( B )
(A) ; (B) ; (C) ; (D) .
2. 在磁感应强度为 的均匀磁场中,取一边长为 的立方形闭合面,则通过该闭合面的磁通量的大小为: ( D )
(A) ; (B) ; (C) ; (D) 0。
3. 如图,两导线中的电流I1=4 A,I2=1 A,根据安培环路定律,对图中所示的闭合曲线C有 = ( A )
(A) 3μ0; (B)0;
(C) -3μ0; (D)5μ0。
4.半径为a的长直圆柱体载流为I,电流I均匀分布在横截面上,则圆柱体外(r>a)的一点P的磁感应强度的大小为 ( A )
(A) ; (B) ;
(C) ; (D) 。
5.某时刻波形图如图所示,下列说法正确的是 ( B )
(A) A点势能最大,动能最小;
(B) B点势能最大,动能最大。
(C) A、C两点势能最大,动能最大;
(D) B点动能最大,势能最小。
6. 将水平弹簧振子拉离平衡位置5cm,由静止释放而作简谐振动,并开始计时,若选拉开方向为 轴正方向,并以 表示振动方程,则这一简谐振动的初相位和振幅为 ( B )
(A) , ;    (B) , ;
(C) , ; (D) , 。
7. 一物体作简谐振动, 振动方程为x=Acos(ωt+π/4)。在t=T/4(T为周期)时刻,物体的加速度为 ( D )
(A) ; (B) ; (C) ; (D) 。
8. 简谐振动的位移—时间曲线关系如图所示,该简谐振动的振动方程为
(A) x=4cos2πt(m); ( C )
(B) x=4cos(πt-π)(m);
(C) x=4cosπt(m);
(D) x=4cos(2πt+π)(m)。
9.一余弦波沿x轴负方向传播,已知x=-1 m处振动方程为y=Acos(ωt+ ),若波速为u,则波动方程为 ( C )
(A) ; (B) ;
(C) ; (D)
10.如图所示,两平面玻璃板OA和OB构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A板与B板的夹角θ增大时,干涉图样将 ( C )
(A) 干涉条纹间距增大,并向O方向移动;
(B) 干涉条纹间距减小,并向B方向移动;
(C) 干涉条纹间距减小,并向O方向移动;
(D) 干涉条纹间距增大,并向O方向移动.

得分评卷人


二、填空题:(每小题3分,共18分)
1. 电流为I的长直导线周围的磁感应强度为 。
2. 相干波的相干条件为 振动方向相同、频率相同、相位差恒定 。
3. 谐振子从平衡位置运动到最远点所需时间为 T/4 (用周期表示),走过该距离的一半所需时间为 T/12 (用周期表示)。
4. 从微观上来说, 产生动生电动势的非静电力是 洛仑兹力 。
5.两个谐振动方程为x1=0.03cosωt,x2=0.04cos(ωt+π/2)(SI),则它们的合振幅为 0.05 m 。
6. 描述简谐运动的三个特征量为 振幅、角频率、初相 。
得分评卷人


三、简答题:(每小题6分,共12分)
1. 当一个弹簧振子的振幅增大到两倍时,试分析它的下列物理量将受到什么影响:振动的周期、最大速度、最大加速度和振动的能量。
参考解答:弹簧振子的周期为T=2π 【1分】,仅与系统的内在性质有关,与外界因素无关【1分】,所以与振幅无关。【1分】
vmax=ωA,当A增大到两倍时,vmax也增大到原来的两倍。【1分】
amax=ω2A,当A增大到两倍时,amax也增大到原来的两倍。【1分】
E= kA2,当A增大到两倍时,E增大到原来的四倍。【1分】
2. 把同一光源发的光分成两部分而成为相干光的方法有哪几种?这几种方法分别有什么特点并举例?
参考解答:把同一光源发的光分成两部分而成为相干光的方法有两种:分波阵面法和分振幅法【2分】。分波阵面法是指把原光源发出的同一波阵面上的两部分作为两子光源而取得相干光的方法,如杨氏双缝干涉实验等【2分】;分振幅法是指将一普通光源同一点发出的光,利用反射、折射等方法把它“一分为二”,从而获得相干光的方法,如薄膜干涉等【2分】。
得分评卷人


四、计算题:(第1题7分,其它每小题8分,共31分)
1. 有一个和轻弹簧相连的小球,沿x轴作振幅为A的简谐运动。该振动的表达式用余弦函数表示。若t=0时,球的运动状态分别为:
(1) x0=-A;(2) 过平衡位置向x正方向运动;(3) 过x=A/2处,且向x负方向运动。试确定相应的初相。
解:(1) =π【1分】;(2) =-π/2【1分】;(3) =π/3【1分】。
相量图如下:【图(1)1分;图(2)1分;图(3)2分】

2.一水平弹簧振子,振幅A=2.0×10-2m,周期T=0.50s。当t=0时,
(1) 物体过x=1.0×10-2m处,向负方向运动;
(2) 物体过x=-1.0×10-2m处,向正方向运动。
分别写出以上两种情况下的振动表达式。
解一: 相量图法。由题知 =4π【2分】
(1)φ1= , 其振动表达式 x1=2.0×10-2cos(4πt+ ) (m) 【3分】
(2)φ2= 或- , 其振动表达式 x1=2.0×10-2cos(4πt+ ) (m) 【3分】
解二: 解析法。(1)因为T=0时,x0=1.0×10-2m=A/2, v0<0. 【1分】
由x0=Acosφ= ,知 cosφ= ,则φ=± ,
由 v0=-ωAsinφ0,所以φ= ,【1分】
其振动表达式为 x1=2.0×10-2cos(4πt+ ) (m) 【2分】
(2)因为T=0时,x0=-1.0×10-2m=A/2, v0>0. 【1分】
由x0=Acosφ=- ,知 cosφ=- ,则φ=± (或 , ),
由 v0=-ωAsinφ>0,有 sinφ<0,所以φ= 或- ,【1分】
其振动表达式
x1=2.0×10-2cos(4πt+ ) (m)= 2.0×10-2cos(4πt- ) (m) 【2分】

3. 如图所示,线圈均匀密绕在截面为长方形的整个木环上(木环的内外半径分别为R1和R2,厚度为h,木料对磁场分布无影响),共有N匝,求通入电流I后,环内外磁场的分布。通过管截面的磁通量是多少?
解: 适当选取安培环路,然后根据安培环路定理分两种情况讨论环外和环内的磁场。作垂直于木环中轴线而圆心在中轴线上的圆为安培环路L。
如果圆周在环外,因为 =0,则由安培环路定理可得,在环外 B=0。
如果圆周在环内,且半径为r(R1<r<R2),根据电流分布的对称性可知,与木环共轴的圆周上各点B的大小相等,方向沿圆周的切线方向。则由安培环路定理
【2分】, B•2πr=μ0NI
由此得,在环内 B=μ0NI/(2πr) 【2分】
为了求环管截面通过的磁通量,可先考虑环管内截面上宽为dr,高为h的一窄条面积通过的磁通量为 dφ=Bhdr= dr【2分】
通过管全部截面的磁通量为 Φ= 【2分】
4. 在折射率n1=1.52的镜头表面涂有一层n2=1.38的MgF2增透膜,如果此膜适用于波长λ=550nm的光,膜的最小厚度应是多少?
解一: 增透膜就是使反射光干涉相消,从而增大透射光的光强。因n空<n2<n1,当光在MgF2的上、下表面反射时均有半波损失【2分】,所以反射光干涉相消的条件为
2n2h=(2k+1) , k=0,1,2,… 则 h=(2k+1) 【3分】
当k=0【1分】时,可得增透膜的最小厚度
hmin= = =9.96×10-8(m)= 99.6nm【2分】
解二: 对于增透膜,使反射光干涉相消也就是使透射光干涉相长。故也可由透射光干涉加强求增透膜的厚度。当光在MgF2的上、下表面经二次反射(有半波损失)【2分】后透射到镜头与直接透过MgF2的透射光相遇时,两透射光的光程差为2n2h+λ/2。由干涉相长条件,有
2n2h+ =kλ,k=1,2,3,… 则h=(k- ) 【3分】
当k=1【1分】时,得增透膜最小厚度hmin= = =9.96×10-8(m)=99.6nm【2分】
得分评卷人


五、证明题:(共9分)
如图所示,长直导线中通有电流I,另一矩形线圈共N 匝,宽为a,长为L,以速度v向右平动,试证明:当矩形线圈左边距长直导线的距离为d时线圈中的感应电动势为 。
解一: 由动生电动势公式 求解。
方法一: 通有电流I的长直导线的磁场分布为B=μ0I/2πx,方向垂直线圈平面向里。对于线圈的上、下两边,因 的方向与 的方向垂直,故在线圈向右平移时,线圈的上下两边不会产生感应电动势,(上、下两导线没切割磁场线),只有左右两边产生动生电动势。而左、右两边中动生电动势 的方向相同,都平行纸面向上,可视为并联,所以线圈中的总电动势为
=1-2=N[ - ]【3分】
=N[ ]
=N[ - ]= = 【3分】
 >0, 则 的方向与1的方向相同,即顺时针方向【3分】。
方法二: 当线圈左边距长直导线距离为d时,线圈左边的磁感应强度B1=μ0I/2πd,方向垂直纸面向里。线圈以速度v运动时左边导线中的动生电动势为
1=N =N =NvB1 =Nv L.
方向为顺时针方向【3分】。线圈右边的磁感应强度B2=μ0I/2π(d+a),方向垂直纸面向里。当线圈运动时右边导线中的动生电动势为
2 =N =N =NvB2 =Nv L.
方向为逆时针方【3分】。所以线圈中的感应电动势为
=1-2= Nv L-Nv L=
 >0,即 的方向与1的方向相同,为顺时针方向【3分】。
方法三: 由 = ,积分路径L取顺时针方向,有
 =N[ ]
=N[ ]=N( )
=Nv L-Nv L= 【6分】
 >0,即 的方向与闭合路径L的方向相同,为顺时针方向【3分】。
解二: 由法拉弟电磁感应定律求解。
因为长直导线的磁场是一非均匀磁场B=μ0I/2πr,在线圈平面内磁场方向垂直线圈平面向里。故在距长直导线r处取一长为L,宽为dr的小面元dS=Ldr,取回路绕行方向为顺时针方向,则通过该面元的磁通量
dΦ= =BdScos0°=
通过总个线圈平面的磁通量(设线圈左边距长直导线距离为x时)为
Φ= 【3分】
线圈内的感应电动势由法拉弟电磁感应定律为
 =-
当线圈左边距长直导线距离x=d时,线圈内的感应电动势为
 = 【3分】
因为 >0,所以 的方向与绕行方向一致,即为顺时针方向【3分】。
感应电动势方向也可由楞次定律判断:当线圈向右平动时,由于磁场逐渐减弱,通过线圈的磁通量减少,所以感应电流所产生的磁场要阻碍原磁通的减少,即感应电流的磁场要与原磁场方向相同,所以电动势方向为顺时针方向。


我这几天要考大学物理A上册,试卷是全英文的,谁有整理了物理英语单词,主要是电磁场相关的英语单词

在高中理科各科目中,物理科是相对较难学习的一科,学过高中物理的大部分同学,特别是物理成绩中差等的同学,总有这样的疑问:“上课听得懂,听得清,就是在课下做题时不会。”这是个普遍的问题,值得物理教师和同学们认真研究。下面就高中物理的学习方法,浅谈一些自己的看法,以便对同学们的学习有所帮助。首先分析一下上面同学们提出的普遍问题,即为什么上课听得懂,而课下不会作?我作为学理科的教师有这样的切身感觉:比如读某一篇文学作品,文章中对自然景色的描写,对人物心里活动的描写,都写得令人叫绝,而自己也知道是如此,但若让自己提起笔来写,未必或者说就不能写出人家的水平来。听别人说话,看别人文章,听懂看懂绝对没有问题,但要自己写出来变成自己的东西就不那么容易了。又比如小孩会说的东西,要让他写出来,就必须经过反复写的练习才能达到那一步。因而要由听懂变成会作,就要在听懂的基础上,多多练习,方能掌握其中的规律和奥妙,真正变成自己的东西,这也正是学习高中物理应该下功夫的地方。功夫如何下,在学习过程中应该达到哪些具体要求,应该注意哪些问题,下面我们分几个层次来具体分析。记忆:在高中物理的学习中,应熟记基本概念,规律和一些最基本的结论,即所谓我们常提起的最基础的知识。同学们往往忽视这些基本概念的记忆,认为学习物理不用死记硬背这些文字性的东西,其结果在高三总复习中提问同学物理概念,能准确地说出来的同学很少,即使是补习班的同学也几乎如此。我不敢绝对说物理概念背不完整对你某一次考试或某一阶段的学习造成多大的影响,但可以肯定地说,这对你对物理问题的理解,对你整个物理系统知识的形成都有内在的不良影响,说不准哪一次考试的哪一道题就因为你概念不准而失分。因此,学习语文需要熟记名言警句、学习数学必须记忆基本公式,学习物理也必须熟记基本概念和规律,这是学好物理科的最先要条件,是学好物理的最基本要求,没有这一步,下面的学习无从谈起。积累:是学习物理过程中记忆后的工作。在记忆的基础上,不断搜集来自课本和参考资料上的许多有关物理知识的相关信息,这些信息有的来自一题,有的来自一道题的一个插图,也可能来自一小段阅读材料等等。在搜集整理过程中,要善于将不同知识点分析归类,在整理过程中,找出相同点,也找出不同点,以便于记忆。积累过程是记忆和遗忘相互斗争的过程,但是要通过反复记忆使知识更全面、更系统,使公式、定理、定律的联系更加紧密,这样才能达到积累的目的,绝不能象狗熊掰棒子式的重复劳动,不加思考地机械记忆,其结果只能使记忆的比遗忘的还多。综合:物理知识是分章分节的,物理考纲能要求之内容也是一块一块的,它们既相互联系,又相互区别,所以在物理学习过程中要不断进行小综合,等高三年级知识学完后再进行系统大综合。这个过程对同学们能力要求较高,章节内容互相联系,不同章节之间可以互相类比,真正将前后知识融会贯通,连为一体,这样就逐渐从综合中找到知识的联系,同时也找到了学习物理知识的兴趣。提高:有了前面知识的记忆和积累,再进行认真综合,就能在解题能力上有所提高。所谓提高能力,说白了就是提高解题、分析问题的能力,针对一题目,首先要看是什么问题——力学,热学,电磁学、光学还是原子物理,然后再明确研究对象,结合题目中所给条件,应用相关物理概念,规律,也可用一些物理一级,二级结论,才能顺利求得结果。可以想象,如果物理基本概念不明确,题目中既给的条件或隐含的条件看不出来,或解题既用的公式不对或该用一、二级结论,而用了原始公式,都会使解题的速度和正确性受到影响,考试中得出高分就成了空话。提高首先是解决问题熟练,然后是解法灵活,而后在解题方法上有所创新。这里面包括对同一题的多解,能从多解中选中一种最简单的方法;还包括多题一解,一种方法去顺利解决多个类似的题目。真正做到灵巧运用,信手拈来的程度。综上所术,学习物理大致有六个层次,即首先听懂,而后记住,练习会用,渐逐熟练,熟能生巧,有所创新,从基础知识最初目标,最终达到学习物理的最高境界。在物理学习过程中,依照从简单到复杂的认知过程,对照学习的六个层次,逐渐发现自己所在的位置及水平,找出自己的不足,进而确定自己改进和努力方向。高中阶段的学习是为大学学习做准备的,对同学们自学能力提出了更高的要求,以上所述的物理学习的基本过程——记忆,积累,综合,提高就是对自己自学能力的培养过程,学会了学习方法,对物理科有了兴趣,掌握了物理这门实验学科与实际结合比较紧密的特点,经过自己艰苦的努力,定会把高中物理学好。


上一篇:mbti性格

下一篇:欢声笑语校园行