高一数学必修一知识点总结

时间:2024-09-30 15:16:13编辑:分享君

高一数学必修一知识点总结归纳

  高中数学是很多同学们头痛的科目,如何学好数学,知识点有哪些。以下是由我为大家整理的“高一数学必修一知识点总结归纳”,仅供参考,欢迎大家阅读。    高一数学必修一知识点总结归纳    【第一章:集合与函数概念】   一、集合有关概念   1.集合的含义   2.集合的中元素的三个特性:   (1)元素的确定性如:世界上的山   (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}   (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合   3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}   (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}   (2)集合的表示方法:列举法与描述法。   注意:常用数集及其记法:XKb1.Com   非负整数集(即自然数集)记作:N   正整数集:N*或N+   整数集:Z   有理数集:Q   实数集:R   1)列举法:{a,b,c……}   2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2}   3)语言描述法:例:{不是直角三角形的三角形}   4)Venn图:   4、集合的分类:   (1)有限集含有有限个元素的集合   (2)无限集含有无限个元素的集合   (3)空集不含任何元素的集合例:{x|x2=-5}   二、集合间的基本关系   1.“包含”关系—子集   注意:有两种可能   (1)A是B的一部分,;   (2)A与B是同一集合。   反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA   2.“相等”关系:A=B(5≥5,且5≤5,则5=5)  实   例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”   即:   ①任何一个集合是它本身的子集。AíA   ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)   ③如果AíB,BíC,那么AíC   ④如果AíB同时BíA那么A=B   3.不含任何元素的集合叫做空集,记为Φ   规定:空集是任何集合的子集,空集是任何非空集合的真子集。   4.子集个数:   有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集   三、集合的运算   运算类型交集并集补集   定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.   由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).    【第二章:基本初等函数】   一、指数函数   (一)指数与指数幂的运算   1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.   当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).   当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。   注意:当是奇数时,当是偶数时,   2.分数指数幂   正数的分数指数幂的意义,规定:   0的正分数指数幂等于0,0的负分数指数幂没有意义   指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.   3.实数指数幂的运算性质   (二)指数函数及其性质   1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.   注意:指数函数的底数的取值范围,底数不能是负数、零和1.   2、指数函数的图象和性质    【第三章:第三章函数的应用】   1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。   2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:   方程有实数根函数的图象与轴有交点函数有零点.   3、函数零点的求法:   求函数的零点:   (1)(代数法)求方程的实数根;   (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.   4、二次函数的零点:   二次函数.   1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.  2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.   2)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。   拓展阅读:学习数学的方法   课内重视听讲,课后及时复习   新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。   上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。   特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。   认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。   在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。    适当多做题,养成良好的解题习惯   要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。   对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。   在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。   实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。    调整心态,正确对待考试   首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。   调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。   在考试前要做好准备,练练常规题,把自己的思路展开,在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要使自己的水平正常甚至超常发挥。

高一数学必修1

第一题 先看到他们两个方程式的公共解有-2 所以带入A的集合里直接求得P=-1 然后A集合就算出来了(求解二次方程) 为-2和=1,然后得到B集合方程的另一个解是5.联立两解-2和5可解得Q=3 R=-10 第二题 令X=X-1得到f(x)=f(x+5),于是f(10)=f(6)=f(1)=2,又奇函数,f(-1)=f(-1+5)=f(4)=-f(1)=-2,所以f(10)+f(4)=0
第三题 相当于将对数函数的图像向做移动了一个单位,也就是过(0,0)点(原来是过(1,0)),对数函数性质 这样在(-1,0)满足大于0 则说明f(x) 对数的底数在(0,1),因此 0<2a<1,结果明了了。第四题 递推式 f(2)=f(1+1)=f(1)^2,f(3)=f(2+1)=f(2)*f(1)=f(1)^3......类推可得 f(n)=f(1)^n=a^n.第五题在那个对数函数没有底数 不对 但是思路明确 那就是f(x)以Y轴为对称轴 里面那个对数的取值范围是(-无穷,-1/3)U(1/3,+无穷) 再代入那个对数函数里算就行了 你试试吧


高一数学必修一知识点整理大全

数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。下面是我给大家带来的 高一数学 必修一知识点整理大全,以供大家参考! 高一数学必修一知识点整理大全 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:{…}如{我校的 篮球 队员},{太平洋大西洋印度洋北冰洋} 1.用拉丁字母表示集合:A={我校的篮球队员}B={12345} 2.集合的表示 方法 :列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N_或N+整数集Z有理数集Q实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a:A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2} 4、集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA 2.“相等”关系(5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0}B={-11}“元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ①任何一个集合是它本身的子集。A?A ②真子集:如果A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA) ③如果A?BB?C那么A?C ④如果A?B同时B?A那么A=B 3.不含任何元素的集合叫做空集,记为Φ 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 三、集合的运算 1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集. 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A A∪φ=AA∪B=B∪A. 4、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作:CSA即CSA={x?x?S且x?A} (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。 (3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U 高中数学知识点 总结 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数 28=2×2×7 几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。 公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: 1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。 当合数不是质数的倍数时,这个合数和这个质数互质。 两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。 如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。 如果两个数是互质数,它们的最大公因数就是1。 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、 ?? 3的倍数有3、6、9、12、15、18 ?? 其中6、12、18??是2、3的公倍数,6是它们的最小公倍数。。 如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。 如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。 几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。 高一数学知识点总结 1.函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x); (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数); (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0); (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2.复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称; 4.函数的周期性 (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2|a|的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4|a|的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数; (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数; 5.方程k=f(x)有解k∈D(D为f(x)的值域); 6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min; 7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1); (3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a>0,a≠1,N>0); 8.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象; 9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。 10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A). 11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系; 12.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题 13.恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解; 数学必修一知识点整理 集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 注意:常用数集及其记法:XKb1.Com 非负整数集(即自然数集)记作:N 正整数集:N_或N+ 整数集:Z 有理数集:Q 实数集:R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合 二、集合间的基本关系 1.“包含”关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA) ③如果A?B,B?C,那么A?C ④如果A?B同时B?A那么A=B 3.不含任何元素的集合叫做空集,记为Φ 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 4.子集个数: 有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集 三、集合的运算 运算类型交集并集补集 定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}). 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_. 当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand). 当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。 注意:当是奇数时,当是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.实数指数幂的运算性质 (二)指数函数及其性质 1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 函数的应用 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即: 方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: 求函数的零点: 1(代数法)求方程的实数根; 2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数. 1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点. 高一数学必修一知识点整理大全相关 文章 : ★ 高中数学必修1知识点总结 ★ 高一数学必修一知识点归纳 ★ 高一数学必修一知识点汇总 ★ 高一数学知识点汇总大全 ★ 高中数学高一数学必修一知识点 ★ 高一数学必修一知识点总结归纳 ★ 高中数学必修一知识点总结 ★ 高一数学必修1知识点归纳 ★ 高一数学必修一知识点总结 ★ 高一数学必修一集合知识点归纳 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();


上一篇:神秘通道入口搜索

下一篇:没有了