高一数学必修一集合

时间:2024-10-11 09:03:07编辑:分享君

高中数学必修1知识点总结

  知识的总结总是必要的,那么高中数学必修1的知识点同学们总结过吗,如果还没有来得及,就我这里瞧瞧吧。下面是由我为大家整理的“高中数学必修1知识点总结”,仅供参考,欢迎大家阅读。   高中数学必修1知识点总结   一:集合的含义与表示   1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。   把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。   2、集合的中元素的三个特性:   (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。   (2)元素的互异性:一个给定集合中的元素是的,不可重复的。   (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合   3、集合的表示:{…}   (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}   (2)集合的表示方法:列举法与描述法。   a、列举法:将集合中的元素一一列举出来{a,b,c……}   b、描述法:   ①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。   {xR|x-3>2},{x|x-3>2}   ②语言描述法:例:{不是直角三角形的三角形}   ③Venn图:画出一条封闭的曲线,曲线里面表示集合。   4、集合的分类:   (1)有限集:含有有限个元素的集合   (2)无限集:含有无限个元素的集合   (3)空集:不含任何元素的集合   5、元素与集合的关系:   (1)元素在集合里,则元素属于集合,即:aA   (2)元素不在集合里,则元素不属于集合,即:a¢A   注意:常用数集及其记法:   非负整数集(即自然数集)记作:N   正整数集N*或N+   整数集Z   有理数集Q   实数集R   6、集合间的基本关系   (1).“包含”关系(1)—子集   定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。   二、函数的概念   函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A---B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.   (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;   (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.   函数的三要素:定义域、值域、对应法则   函数的表示方法:(1)解析法:明确函数的定义域   (2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。   (3)列表法:选取的自变量要有代表性,可以反应定义域的特征。   4、函数图象知识归纳   (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.   (2)画法   A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。   (3)函数图像平移变换的特点:   1)加左减右——————只对x   2)上减下加——————只对y   3)函数y=f(x)关于X轴对称得函数y=-f(x)   4)函数y=f(x)关于Y轴对称得函数y=f(-x)   5)函数y=f(x)关于原点对称得函数y=-f(-x)   6)函数y=f(x)将x轴下面图像翻到x轴上面去,x轴上面图像不动得   函数y=|f(x)|   7)函数y=f(x)先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)   三、函数的基本性质   1、函数解析式子的求法   (1、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.   (2、求函数的解析式的主要方法有:   1)代入法:   2)待定系数法:   3)换元法:   4)拼凑法:   2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。   求函数的定义域时列不等式组的主要依据是:   (1)分式的分母不等于零;   (2)偶次方根的被开方数不小于零;   (3)对数式的真数必须大于零;   (4)指数、对数式的底必须大于零且不等于1.   (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.   (6)指数为零底不可以等于零,   (7)实际问题中的函数的定义域还要保证实际问题有意义.   3、相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)   4、区间的概念:   (1)区间的分类:开区间、闭区间、半开半闭区间   (2)无穷区间   (3)区间的数轴表示   5、值域(先考虑其定义域)   (1)观察法:直接观察函数的图像或函数的解析式来求函数的值域;   (2)反表示法:针对分式的类型,把Y关于X的函数关系式化成X关于Y的函数关系式,由X的范围类似求Y的范围。   (3)配方法:针对二次函数的类型,根据二次函数图像的性质来确定函数的值域,注意定义域的范围。   (4)代换法(换元法):作变量代换,针对根式的题型,转化成二次函数的类型。   6.分段函数   (1)在定义域的不同部分上有不同的解析表达式的函数。   (2)各部分的自变量的取值情况.   (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.   (4)常用的分段函数有取整函数、符号函数、含绝对值的函数   7.映射   一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:A---B为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)---B(象)”   对于映射f:A→B来说,则应满足:   (1)集合A中的每一个元素,在集合B中都有象,并且象是的;   (2)集合A中不同的元素,在集合B中对应的象可以是同一个;   (3)不要求集合B中的每一个元素在集合A中都有原象。   注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的。所以函数是映射,而映射不一定的函数   8、函数的单调性(局部性质)及最值   (1、增减函数   (1)设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1   (2)如果对于区间D上的任意两个自变量的值x1,x2,当x1   注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种   (2、图象的特点   如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.   (3、函数单调区间与单调性的判定方法   (A)定义法:   任取x1,x2∈D,且x1   作差f(x1)-f(x2);   变形(通常是因式分解和配方);   定号(即判断差f(x1)-f(x2)的正负);   下结论(指出函数f(x)在给定的区间D上的单调性).   (B)图象法(从图象上看升降)   (C)复合函数的单调性   复合函数:如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。   复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”   注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.   9:函数的奇偶性(整体性质)   (1、偶函数   一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.   (2、奇函数   一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.   (3、具有奇偶性的函数的图象的特征   偶函数的图象关于y轴对称;奇函数的图象关于原点对称.   利用定义判断函数奇偶性的步骤:   a、首先确定函数的定义域,并判断其是否关于原点对称;若是不对称,则是非奇非偶的函数;若对称,则进行下面判断;   b、确定f(-x)与f(x)的关系;   c、作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;   若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.   (4)利用奇偶函数的四则运算以及复合函数的奇偶性   a、在公共定义域内,偶函数的加减乘除仍为偶函数;   奇函数的加减仍为奇函数;   奇数个奇函数的乘除认为奇函数;   偶数个奇函数的乘除为偶函数;   一奇一偶的乘积是奇函数;   a、复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇。   注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,   (1)再根据定义判定;   (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;   (3)利用定理,或借助函数的图象判定.   10、函数最值及性质的应用   (1、函数的最值   a利用二次函数的性质(配方法)求函数的(小)值   b利用图象求函数的(小)值   c利用函数单调性的判断函数的(小)值:   如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);   如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);   (2、函数的奇偶性与单调性   奇函数在关于原点对称的区间上有相同的单调性;   偶函数在关于原点对称的区间上有相反的单调性。   (3、判断含糊单调性时也可以用作商法,过程与作差法类似,区别在于作差法是与0作比较,作商法是与1作比较。   (4)绝对值函数求最值,先分段,再通过各段的单调性,或图像求最值。   (5)在判断函数的奇偶性时候,若已知是奇函数可以直接用f(0)=0,但是f(0)=0并不一定可以判断函数为奇函数。(高一阶段可以利用奇函数f(0)=0)。   【篇二】   方程的根与函数的零点   1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。   2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.   3、函数零点的求法:   (1)(代数法)求方程的实数根;   (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.   4、二次函数的零点:   (1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.   (2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.   (3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.   拓展阅读:高一生物必修一知识点总结整理   高一生物必修一走近细胞知识点总结   第一节从生物圈到细胞   1病毒没有细胞结构,但必须依赖(活细胞)才能生存。   2生命活动离不开细胞,细胞是生物体结构和功能的(基本单位)。   3生命系统的结构层次:(细胞)、(组织)、(器官)、(系统)、(个体)、(种群)(群落)、(生态系统)、(生物圈)。   4血液属于(组织)层次,皮肤属于(器官)层次。   5植物没有(系统)层次,单细胞生物既可化做(个体)层次,又可化做(细胞)层次。   6地球上最基本的生命系统是(细胞)。   7种群:在一定的区域内同种生物个体的总和。例:一个池塘中所有的鲤鱼。   8群落:在一定的区域内所有生物的总和。例:一个池塘中所有的生物。(不是所有的鱼)   9生态系统:生物群落和它生存的无机环境相互作用而形成的统一整体。   10以细胞代谢为基础的生物与环境之间的物质和能量的交换;以细胞增殖、分化为基础的生长与发育;以细胞内基因的传递和变化为基础的遗传与变异。   第二节细胞的多样性和统一性   一、高倍镜的使用步骤(尤其要注意第1和第4步)   1、在低倍镜下找到物象,将物象移至(视野中央)   2、转动(转换器),换上高倍镜。   3、调节(光圈)和(反光镜),使视野亮度适宜。   4、调节(细准焦螺旋),使物象清晰。   二、显微镜使用常识   1、调亮视野的两种方法(放大光圈)、(使用凹面镜)。   2、高倍镜:物象(大),视野(暗),看到细胞数目(少)。   低倍镜:物象(小),视野(亮),看到的细胞数目(多)。   3、物镜:(有)螺纹,镜筒越(长),放大倍数越大。   目镜:(无)螺纹,镜筒越(短),放大倍数越大。   放大倍数越大、视野范围越小、视野越暗、视野中细胞数目越少、每个细胞越大   放大倍数越小、视野范围越大、视野越亮、视野中细胞数目越多、每个细胞越小   4、放大倍数=物镜的放大倍数х目镜的放大倍数   5、一行细胞的数目变化可根据视野范围与放大倍数成反比   计算方法:个数×放大倍数的比例倒数=最后看到的细胞数   如:在目镜10×物镜10×的视野中有一行细胞,数目是20个,在目镜不换物镜换成40×,那么在视野中能看见多少个细胞?20×1/4=5   6、圆行视野范围细胞的数量的变化可根据视野范围与放大倍数的平方成反比计算   如:在目镜为10×物镜为10×的视野中看见布满的细胞数为20个,在目镜不换物镜换成20×,那么在视野中我们还能看见多少个细胞?20×(1/2)2=5   三、原核生物与真核生物主要类群:   原核生物:蓝藻,含有(叶绿素)和(藻蓝素),可进行光合作用,属自养型生物。细菌:(球菌,杆菌,螺旋菌,乳酸菌);放线菌:(链霉菌)支原体,衣原体,立克次氏体   真核生物:动物、植物、真菌:(青霉菌,酵母菌,蘑菇)等、   四、细胞学说   1、创立者:(施莱登,施旺)   2、细胞的发现者及命名者:英国科学家、罗伯特?虎克   3、内容要点:P10,共三点   4、揭示问题:揭示了(细胞统一性,和生物体结构的统一性)。

高中数学必修1知识点总结

高中高一数学必修1各章知识点总结
第一章 集合与函数概念
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.
2、集合的中元素的三个特性:
1.元素的确定性; 2.元素的互异性; 3.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.
(4)集合元素的三个特性使集合本身具有了确定性和整体性.
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
2.集合的表示方法:列举法与描述法.
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A
列举法:把集合中的元素一一列举出来,然后用一个大括号括上.
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}
4、集合的分类:
1.有限集 含有有限个元素的集合
2.无限集 含有无限个元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合.
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.“相等”关系(5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
① 任何一个集合是它本身的子集.AíA
②真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)
③如果 AíB, BíC ,那么 AíC
④ 如果AíB 同时 BíA 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集.
三、集合的运算
1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.
记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,
A∪φ= A ,A∪B = B∪A.
4、全集与补集
(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作: CSA 即 CSA ={x | x?S且 x?A}
S

CsA

A

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用U来表示.
(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

二、函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.
定义域补充
能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.
(又注意:求出不等式组的解集即为函数的定义域.)
构成函数的三要素:定义域、对应关系和值域
再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关.相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)
(见课本21页相关例2)
值域补充
(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础.
3. 函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.
C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }
图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成.
(2) 画法
A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.
B、图象变换法(请参考必修4三角函数)
常用变换方法有三种,即平移变换、伸缩变换和对称变换
(3)作用:
1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路.提高解题的速度.
发现解题中的错误.
4.快去了解区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.
5.什么叫做映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射.记作“f:A B”
给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象
说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象.
常用的函数表示法及各自的优点:
1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.
注意啊:解析法:便于算出函数值.列表法:便于查出函数值.图象法:便于量出函数值
补充一:分段函数 (参见课本P24-25)
在定义域的不同部分上有不同的解析表达式的函数.在不同的范围里求函数值时必须把自变量代入相应的表达式.分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
补充二:复合函数
如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数.
例如: y=2sinX y=2cos(X2+1)
7.函数单调性
(1).增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1


高中数学必修一知识点归纳内容是什么?

高中数学必修一知识点归纳内容:1、两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。2、侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。3、圆锥是以直角三角形的一条直角边为旋转轴,旋转一周所成。4、球体是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。5、二次函数的图像是抛物线,抛物线是轴对称图形。对称轴为直线x=-b/2a。

上一篇:宫崎英高

下一篇:没有了