范德蒙行列式

时间:2024-10-14 19:21:46编辑:分享君

范德蒙行列式如何计算?

范德蒙行列式算法先转置,然后各列提出公因子后。得到范德蒙行列式再利用范德蒙行列式的计算公式计算根据范德蒙行列式的特点,可以将所给行列式化为范德蒙德行列式,然后利用其结果计算,范德蒙行列式就是在求线形递归方程通解的时候计算的行列式若递归方程的n个解为a1,a2,a3,an。范德蒙行列式特点共n行n列用数学归纳法.当n=2时范德蒙德行列式D2=x2-x1范德蒙德行列式成立现假设范德蒙德行列式对n-1阶也成立,对于n阶有首先要把Dn降阶,从第n列起用后一列减去前一列的x1倍,然后按第一行进行展开。就有Dn=(x2-x1)(x3-x1)...(xn-x1)∏(xi-xj)(其中∏表示连乘符号,其下标i,j的取值为n>=i>j>=2)于是就有Dn=∏(xi-xj)(下标i,j的取值为n>=i>j>=1),原命题得证。

怎么证明范德蒙德行列式

当n=2时范德蒙德行列式D2=x2-x1范德蒙德行列式成立现假设范德蒙德行列式对n-1阶也成立,对于n阶有:首先要把Dn降阶,从第n行起用后一行减去前一行的x1倍,按第一行进行展开,有Dn=(x2-x1)(x3-x1)...(xn-x1)Dn-1于是就有Dn=||(xi-xj)(其中||表示连乘,i,j的取值为m>=i>j>=2),原命题得证。数学归纳法(Mathematical Induction, MI)是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。除了自然数以外,广义上的数学归纳法也可以用于证明一般良基结构,例如:集合论中的树。这种广义的数学归纳法应用于数学逻辑和计算机科学领域,称作结构归纳法。在数论中,数学归纳法是以一种不同的方式来证明任意一个给定的情形都是正确的(第一个,第二个,第三个,一直下去概不例外)的数学定理。虽然数学归纳法名字中有“归纳”,但是数学归纳法并非不严谨的归纳推理法,它属于完全严谨的演绎推理法。事实上,所有数学证明都是演绎法。

行列式中的“范德蒙行列式”是什么样的?

范德蒙得行列式如下图:一个e阶的范德蒙行列式由e个数c1,c2,…,ce决定,它的第1行全部都是1,也可以认为是c1,c2,…,ce各个数的0次幂,它的第2行就是c1,c2,…,ce(的一次幂),它的第3行是c1,c2,…,ce的二次幂,它的第4行是c1,c2,…,ce的三次幂,…,直到第e行是c1,c2,…,ce的e-1次幂。扩展资料利用行列式展开法则,按第5列展开,得到的展开式如下:A15 + (-A25) * x + A35 * x^2 + (-D) * x^3 + A55 * x^4 [其中A为代数余子式,D为前面的四阶行列式的值]由范德蒙行列式计算公式,得出该五阶行列式的值为:(b-a)(c-a)(c-b)(d-a)(d-b)(d-c)(x-a)(x-b)(x-c)(x-d)它和上面的展开式相等,我们所需要的是行列式D的值,所以我们需要算的就是展开式中x^3的系数,所以得出D=(a+b+c+d)(b-a)(c-a)(c-b)(d-a)(d-b)(d-c)

上一篇:古埃及木乃伊

下一篇:没有了