二次根式测试题

时间:2024-11-18 03:32:17编辑:分享君

二次根式化简两题

二次根式的化简是初中代数的重要内容之一,在学习中除了掌握“分子、分母同乘以分母的有理化因式”这一种基本方法外,再了解其它一些针对特殊题目所采用的技巧,对开拓视野、提高解题能力无疑是大有裨益的.本文就一些常用的技巧举例介绍信如下.
一、利用平方差公式
例1计算: + .
分析:把第一个因式与第三个结合,第二个因式与第四个因式结合,再分别运用平方差公式计算,可得如下解法:
解:原式= =
二、利用因式分解法
1.提取公因式法:
例2化简 .
分析:直接分母有理化显然很繁,考虑分子、分母是否有公因式可以约?易见,分子的每一项都有因式 ,分母的每一项都有因式 ,分别提取后分子、分母有公因式 .故可采用如下解法.
解:原式= .
2.配方法:
例3化简 .
分析:考虑对分子进行配方、分解.把 ,进一步化为 ,故
原式= .
例4化简 .
分析:分母是个四项式,运用分组分解法考虑把它因式分解.

解:原式= = .
三、利用分式基本关系式
例5化简 .
分析:分母是两个因式的积,若能约去一个,则可使化简计算量大大减少.由于题目的结构与上述分式基本关系式的结构相类似,故设法把分子化为分母两因式和的形式.


求二次根式计算或化简练习题 越多越好!【最好附有答案。】

①5√8-2√32+√50
=5*3√2-2*4√2+5√2
=√2(15-8+5)
=12√2
②√6-√3/2-√2/3
=√6-√6/2-√6/3
=√6/6
③(√45+√27)-(√4/3+√125)
=(3√5+3√3)-(2√3/3+5√5)
=-2√5+7√5/3
④(√4a-√50b)-2(√b/2+√9a)
=(2√a-5√2b)-2(√2b/2+3√a)
=-4√a-6√2b
⑤√4x*(√3x/2-√x/6)
=2√x(√6x/2-√6x/6)
=2√x*(√6x/3)
=2/3*|x|*√6
⑥(x√y-y√x)÷√xy
=x√y÷√xy-y√x÷√xy
=√x-√y
⑦(3√7+2√3)(2√3-3√7)
=(2√3)^2-(3√7)^2
=12-63
=-51
⑧(√32-3√3)(4√2+√27)
=(4√2-3√3)(4√2+3√3)
=(4√2)^2-(3√3)^2
=32-27
=5
⑨(3√6-√4)²
=(3√6)^2-2*3√6*√4+(√4)^2
=54-12√6+4
=58-12√6
⑩(1+√2-√3)(1-√2+√3)
=[1+(√2-√3)][1-(√2-√3)]
=1-(√2-√3)^2
=1-(2+3+2√6)
=-4-2√6
⑨(3√6-√4)2
=(3√6)^2-2*3√6*√4+(√4)^2
=54-12√6+4
=58-12√6
⑩(1+√2-√3)(1-√2+√3)
=[1+(√2-√3)][1-(√2-√3)]
=1-(√2-√3)^2
=1-(2+3+2√6)
=-4-2√6①5√8-2√32+√50
=5*3√2-2*4√2+5√2
=√2(15-8+5)
=12√2
②√6-√3/2-√2/3
=√6-√6/2-√6/3
=√6/6
③(√45+√27)-(√4/3+√125)
=(3√5+3√3)-(2√3/3+5√5)
=-2√5+7√5/3
④(√4a-√50b)-2(√b/2+√9a)
=(2√a-5√2b)-2(√2b/2+3√a)
=-4√a-6√2b
⑤√4x*(√3x/2-√x/6)
=2√x(√6x/2-√6x/6)
=2√x*(√6x/3)
=2/3*|x|*√6
⑥(x√y-y√x)÷√xy
=x√y÷√xy-y√x÷√xy
=√x-√y
⑦(3√7+2√3)(2√3-3√7)
=(2√3)^2-(3√7)^2
=12-63
=-51
⑧(√32-3√3)(4√2+√27)
=(4√2-3√3)(4√2+3√3)
=(4√2)^2-(3√3)^2
=32-27
=5

网上都有,自己找吧


上一篇:14万人看升旗

下一篇:没有了