初2数学上册

时间:2024-11-25 20:00:21编辑:分享君

求10道初二上学期数学趣味题

“已知一个正多边形面积为12,由两组对棱构成的长方形面积为4,请问这是一个正几边形?” 仅用不能改变两脚距离的圆规作任意给定线段的中点。你当然不只一次地欣赏过,把一块石头丢进平静的水面,所造成的圆形的波纹。而且,无疑地,对于这个自然现象的解释,你从未感到过困难:水面受到石块掷击后,激起的波浪就会以相同的速度从这一点向四周外展开,因此,每一瞬间波浪的各点都是处于和波浪发生各点同样距离的地方,也就是说,各个点都处在同一个圆周上。以上是静水中的情形。那么,在流动着的水中,事情有没有变化呢?在快速流动的河中由投石激起的波浪,向四面扩展的情形,究竟仍是圆形,还是会变成一个拉长的圆形了呢?

求10道初二上学期数学趣味题~~~?

1.一位老人有17只羊,分给三个儿子:老大九分之一,老二三分之一,老三二分之一。三个儿子想:羊又不能宰,这该怎么办?
  答案:老大2只,老二6只,老三9只。
 
2.王师傅爱喝酒,家中有24只空啤酒瓶。某商店推出一项活动:三个空啤酒瓶可以换一瓶啤酒。请问:王师傅家的空啤酒瓶可以换多少瓶啤酒喝?
  答案:12瓶。因为三个空啤酒瓶可以换一瓶啤酒,相当于两个空瓶换一瓶...,2,


初二数学上册知识点总结

  数学作为同学们最容易拉分的科目,有哪些知识点呢。以下是由我为大家整理的“初二数学上册知识点总结”,仅供参考,欢迎大家阅读。   初二数学上册知识点总结   第一章 勾股定理   1、探索勾股定理   ① 勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2   2、一定是直角三角形吗   ① 如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形   3、勾股定理的应用   第二章 实数   1、认识无理数   ① 有理数:总是可以用有限小数和无限循环小数表示   ② 无理数:无限不循环小数   2、平方根   ① 算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根   ② 特别地,我们规定:0的算数平方根是0   ③ 平方根:一般地,如果一个数x的平方等于a,即x2=a。那么这个数x就叫做a的平方根,也叫做二次方根   ④ 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根   ⑤ 正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±   ⑥ 开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数   3、立方根   ① 立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根   ② 每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。   ③ 开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数   4、估算   ① 估算,一般结果是相对复杂的小数,估算有精确位数   5、用计算机开平方   6、实数   ① 实数:有理数和无理数的统称   ② 实数也可以分为正实数、0、负实数   ③ 每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大   7、二次根式   ① 含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数   ② =(a≥0,b≥0),=(a≥0,b>0)   ③ 最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式   ④ 化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式    第三章 位置与坐标   1、确定位置   ① 在平面内,确定一个物体的位置一般需要两个数据   2、平面直角坐标系   ① 含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系   ② 通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点   ③ 建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示   ④ 在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限   ⑤ 在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应   3、轴对称与坐标变化   ① 关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数   第四章 一次函数   1、函数   ① 一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数其中x是自变量   ② 表示函数的方法一般有:列表法、关系式法和图象法   ③ 对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值   2、一次函数与正比例函数   ① 若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数,特别的,当b=0时,称y是x的正比例函数   3、一次函数的图像   ① 正比例函数y=kx的图像是一条经过原点(0,0)的直线。因此,画正比例函数图像是,只要再确定一点,过这个点与原点画直线就可以了   ② 在正比例函数y=kx中,当k>0时,y的值随着x值的增大而减小;当k<0时,y的值随着x的值增大而减小   ③ 一次函数y=kx+b的图像是一条直线,因此画一次函数图像时,只要确定两个点,再过这两点画直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b   ④ 一次函数y=kx+b的图像经过点(0,b)。当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小   4、一次函数的应用   ① 一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解,从图像上看,一次函数y=kx+b的图像与x轴交点的横坐标就是方程kx+b=0    第五章 二元一次方程组   1、认识二元一次方程组   ① 含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程   ② 共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组   ③ 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解   2、求解二元一次方程组   ① 将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法   ② 通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法   3、应用二元一次方程组   ① 鸡兔同笼   4、应用二元一次方程组   ① 增减收支   5、应用二元一次方程组   ① 里程碑上的数   6、二元一次方程组与一次函数   ① 一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线   ② 一般地,从图形的角度看,确定两条直线相交点的坐标,相当于求相应的二元一次方程组的解,解一个二元一次方程组相当于确定相应两条直线交点的坐标   7、用二元一次方程组确定一次函数表达式   ① 先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。   8、三元一次方程组   ① 在一个方程组中,各个式子都含有三个未知数,并且所含有未知数的项的次数都是1,这样的方程叫做三元一次方程   ② 像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组   ③ 三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解.    第六章 数据的分析   1、平均数   ① 一般地,对于n个数x1x2...xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。   ② 在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数   2、中位数与众数   ① 中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数   ② 一组数据中出现次数最多的那个数据叫做这组数据的众数   ③ 平均数、中位数和众数都是描述数据集中趋势的统计量   ④ 计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。   ⑤ 中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息   ⑥ 各个数据重复次数大致相等时,众数往往没有特别意义   3、从统计图分析数据的集中趋势   4、数据的离散程度   ① 实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量   ② 数学上,数据的离散程度还可以用方差或标准差刻画   ③ 方差是各个数据与平均数差的平方的平均数   ④ 其中是x1 ,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根   ⑤ 一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。   拓展阅读:如何学好初中数学   1、上课以及课前课后   同学们平时的学习时间是在课上,但是大家要树立一个意识:课前课后也很重要。利用好这些时间,在配合适当的学习方法,学好数学其实并不难。   课前:课前预习很重要,一方面可以先了解上课知识,课上能跟上老师思路,另一方面标记出自己不会的知识点,课上可以根据自己的情况侧重去听。   课上:课上45分钟,大多数同学都很难保证整节课集中精神,这就要求我们课前一定要预习,找到自己不会的知识点,课上尽量理解吸收。还是希望大家课上尽量集中精神,跟随老师的进度了解重点与难点,有利于复习。   课后:课后的时间一般用来复习,大家可以把自己没有掌握的知识点复习一下,也可以对本节所学知识进行检测与巩固。如果课后复习还存在不理解的地方,大家一定要找老师和同学去问清楚。   有了课前课上课后三个阶段,相信大家数学基础基本差不多了,也希望大家继续保持这个习惯。    2、适当练习   大家都知道学习数学最重要的是练习,平时多做一些基础题可以锻炼解题熟练度,多做一些中档题可以熟悉考试题型,过于困难的题目不建议大家多做,可以尝试解决了解难度,掌握做题技巧,训练不要盲目,不要钻牛角尖。做题要学会总结,总结哪些题目经常出现,这可能是中考常考题型。有的同学每天都在做题,辅导书用掉一堆却没有提高,这就是盲目做题没有技巧,没有总结。   同学们在做题时多关注一下解题思路、方法、技巧等,掌握做题思路,总结做题技巧,这对考试来说至关重要考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。

初二数学上册知识点总结

初二数学上册知识点总结   数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。以下是我整理的关于初二数学上册知识点总结,希望大家认真阅读!   第十一章 三角形   一、知识结构图   边   与三角形有关的线段 高   中线   角平分线   三角形的内角和 多边形的内角和   三角形的外角和 多边形的外角和   二、知识定义   三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。   三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。   高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。   中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。   角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。   三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。   多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。   多边形的内角:多边形相邻两边组成的角叫做它的内角。   多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。   多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。   正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。   平面镶嵌:用一些不重叠摆放的多边形把平面的`一部分完全覆盖,叫做用多边形覆盖平面。   三、公式与性质   三角形的内角和:三角形的内角和为180°   三角形外角的性质:   性质1:三角形的一个外角等于和它不相邻的两个内角的和。   性质2:三角形的一个外角大于任何一个和它不相邻的内角。   多边形内角和公式:n边形的内角和等于(n-2)·180°   多边形的角和:多边形的外角和为360°。   多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。   (2)n边形共有条对角线。   第十二章 全等三角形   一、全等三角形   1.定义:能够完全重合的两个三角形叫做全等三角形。   2.全等三角形的性质   ①全等三角形的对应边相等、对应角相等。   ②全等三角形的周长相等、面积相等。   ③全等三角形的对应边上的对应中线、角平分线、高线分别相等。   3.全等三角形的判定   边边边:三边对应相等的两个三角形全等(可简写成“SSS”)   边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)   角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)   角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)   斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)   4.证明两个三角形全等的基本思路:   二、角的平分线:   1.(性质)角的平分线上的点到角的两边的距离相等   2.(判定)角的内部到角的两边的距离相等的点在角的平分线上   三、学习全等三角形应注意以下几个问题:   1.要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;   2.表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;   3.有三个角对应相等或有两边及其中一边的对角对应相等的两个三角形不一定全等;   4.时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角” ;


上一篇:乳山银滩房产

下一篇:没有了