测序是什么意思
将DNA化学信号转变为计算机可处理的数字信号的一个过程。测序技术目前已经发展到了第三代,基本的方法都是通过各种物理或者化学技术,如一代测序的条带、二代测序的荧光以及三代测序的电流信号,一个一个的把DNA序列读取出来。二代测序是当前的主流技术。如上图,在大量待测序单链中加入4种正常的脱氧核酸以及4种双脱氧核酸进行随机反应,当遇到双脱氧核酸时链式反应终止。终止点可能是序列上的任意位置。所以当充分反应后,待测序列每一个碱基都至少有一个终止点(双脱氧核苷酸处)。另一种操作方法是,把四种双脱氧核酸分开加入,这样对加入每一种双脱氧核酸的样品来说,电泳带的位置就是对应该种碱基在序列上的位置。如下图
基因组测序
问题一:全基因组测序的技术路线 提取基因组DNA,然后随机打断,电泳回收所需长度的DNA片段(0.2~5Kb),加上接头, 进行基因簇cluster制备或电子扩增E-PCR,最后利用Paired-End(Solexa)或者Mate-Pair(SOLiD)的方法对插入片段进行测序。然后对测得的序列组装成Contig,通过Paired-End的距离可进一步组装成Scaffold,进而可组装成染色体等。组装效果与测序深度与覆盖度、测序质量等有关。常用的组装有:SOAPdenovo、Trimity、Abyss等。
问题二:个人全基因组重测序需花费多少钱? 人类基因组大小3G, 重测序一般需要测定至少20x以上的数据(数据乘数高的话对于信息分析是有海的),也就是说一般需要测定60G的数据,如果1G按照5000元算的话,需要30万元。
不过要看你的目的,现在illumina推出的my-seq测1个人的好像只需要几万。
问题三:什么是基因组测序技术 自1998年美国塞莱拉遗传公司组建以来,人类基因组研究开始由两部分科学家同时展开,分别是由公共经费支持的人类基因组工程和美国塞莱拉遗传公司。在研究过程中,他们也分别采用了两种不同的测序和分析的方法。塞莱拉公司的核心分析方法被称为霰弹法,人类基因组工程则采用了克隆法。
所谓霰弹法,其实是一种高度计算机化的方法,它先把基因组随机分成已知长度(2000个碱基对、1万个碱基对、5万个碱基对)的片段,然后用数学算法将这些片段组装成毗邻的大段并确定它们在基因组上的正确位置。
塞莱拉公司的科学家先用霰弹法测序DNA,并将整个基因组覆盖8次,然后用两个数学公式将人类基因组序列多次组装起来,确定出基因中的转录单元,预测出60%的已识别基因的分子功能。最后研究人员将人类基因组信息与此前已完成的果蝇和线虫的基因组序列进行比较,从而找出了三者共有的核心功能。
而人类基因组工程采用的克隆法则通过先复制更大段的人类基因序列,然后将它们绘制到基因组的适当区域进行研究。这种方法需要研究人员在早期把较多的时间和精力放到克隆和绘制草图上。
两个研究组将所得数据进行对比,经人类基因组工程的科学家、《科学》和《自然》杂志高级指导编辑评估,表明塞莱拉公司的基因组分析与人类基因组工程的分析结果虽然存在一些差异,但大部分地方都有极高的吻合度。
塞莱拉公司测定的序列覆盖了95%以上的人类基因组,其中约85%的人类基因组存在于按照正确顺序排列、至少包含50万个碱基对的片段中。这一序列为人类至少拥有2.6383万个控制合成蛋白质的基因提供了有力的证据,也为另外1.2731万个假设基因的存在提供了较弱的证据
问题四:RNA测序与整个基因组测序相比有什么优势? RNA测序也就是所谓的RNA-seq,通常指的是转录组测序,只测细胞中的转录本。只有基因组中被转录出来的那部分能测到。通常用于寻找差异表达基因以及发现新基因。而基因组测序是整个基因组都测,不管转录不转录,通常用于基因组组装,重测序进行基因分型等。
这是根本不同的两个东西,一个是测转录组,一个是测基因组,它们的不同就是转录组和基因组的不同。至于优势,根据自己的目的来判断吧。
欢迎追问。
问题五:个人基因组测序有哪些意义 理论上说,知道了序列,就可以确定这个人的基因,从而能够知道这个人的表型特征,或者对那些病是易感的,以后有可能得什么病,以及对将来对孩子的遗传等等…
但目前来说,个人的全基因组还没有什么用,因为现在我们对基因组中序列的信息了解的还太少,如SNP相关疾病,多基因遗传病等。在科研上全基因组测序,可以为我们提供数据库,以便分析相关的特征。
随着代号为AK1的韩国人的测序成功,目前世界上只有5个人进行了,全基因组测序,另外四个是:一名非洲优鲁巴人、基因研究的先驱詹姆斯・沃森、克里格・文特和一名代号为YH的中国人。
问题六:基因组测序的测序深度一般是多少 基因组测序的测序深度一般是10X。
测序深度是指测序得到的总碱基数与待测基因组大小的比值。假设一个基因大小为2M,测序深度为10X,那么获得的总数据量为20M。
基因测序是一种新型基因检测技术,能够从血液或唾液中分析测定基因全序列,预测罹患多种疾病的可能性,个体的行为特征及行为合理,如癌症或白血病,运动天赋,酒量等。
什么是直接测序
DNA测序的方法有很多种. 目前最常见的是双脱氧终止法了. 在测序用的缓冲液中含有四种dNTP及聚合酶. 测序时分成四个反应, 每个反应除上述成分外分别加入2,3-双脱氧的A, C, G, T核苷三磷酸(称为ddATP, ddCTP, ddGTP, ddTTP), 然后进行聚合反应. 在第一个反应物中, ddATP会随机地代替dATP参加反应一旦ddATP加入了新合成的DNA链, 由于其3位的羟基变成了氢, 所以不能继续延伸. 所以第一个反应中所产生的DNA链都是到A就终止了; 同理第二个反应产生的都是以C结尾的; 第三个反应的都以G结尾, 第四个反应的都以T结尾, 电泳后就可以读出序列了. 也许这样说你不一定明白. 举一个例子, 假如有一个DNA, 互补序列是GATCCGAT, 我们试着做一下:
在第一个反应中由于含有dNTP+ddATP, 所以遇到G, T, C三个碱基时没什么问题, 但遇到A时, 掺入的可能是dATP或ddATP, 比如已合成到G, 下一个如果参与反应的是ddATP则终止, 产生一个仅有2个核苷酸的序列: GA, 否则继续延伸, 可以产生序列GATCCG, 又到了下一个A了. 同样有两种情况, 如果是ddATP掺入, 则产生的序列是GATCCGA, 延伸终止, 否则可以继续延伸, 产生GATCCGAT.
所以在第一个反应系统中产生的都是以A结尾的片段:
GA, GATCCGA,
同理在第二个反应中产生的都是以C结尾的片段:
GATC, GATCC,
在第三个反应中产生的都是以G结尾的片段:
G, GATCCG
在第四个反应中产生的都是以T结尾的片段:
GAT, GATCCGAT,
电泳时按分子量大小排列, A反应的片段长度为2, 7; C反应的为4, 5; G反应的为1, 6; T反应的为3, 8, 四个反应的产物分别电泳, 结果为
8 7 6 5 4 3 2 1
A | |
C | |
G | |
T | |
我们可以从右向左读, 为GATCCGAT, 至此, 测序完成(上面这个图在百度知道中显示不正常, 因为百度知道的网页用的是比例字体, 你如果想看它, 拷贝到记事本中, 用等宽的字体来看).
基因测序的步骤是什么?
PCR产物直接测序技术现已成为分子生物学和基因组学研究中的一个重要技术,广泛用于基因突变检测、遗传性疾病诊断、单核苷酸多态性研究、基因组重叠序列群等.与传统克隆测序技术相比较,直接对PCR扩增的DNA进行测序,省去了耗时的克隆步骤,避免了传统的细菌培养,模板提取等重复性操作,可以从少量的原始样品中得到正确的DNA序列信息.PCR产物直接测序技术具有快速、简便、稳定经济的优点.
试验试剂
PCR扩增的双链DNA模板
长约20个核苷酸的DNA引物
DNA聚合酶
测序胶
0.1mol/L DDT
α-32P-dATP
dNTP/ddNTP混合物(80μmol/L/8μmol/L)
dNTP(dCTP、dGTP 、dTTP 各0.75μmol/L)
测序反应缓冲液:40mmol/L Tris-HCl(pH7.5),20mmol/L MgCl2,50mmol/L NaCl
终止缓冲液:95% 甲酰胺,20mmol/L EDTA,0.05% 溴酚蓝,0.05% 二甲苯腈
试验步骤:
1、 4个微量离心管中各加入dNTP/ddNTP混合物2.5μl,混合物37OC温浴5min,备用.
2、 在一个空的微量离心管中加入1pmol的PCR扩增双链DNA,10pmol测序引物,2μl 5×测序缓冲液,加双蒸水至总体积10μl,96OC加热8min,冰浴泠却1min,4OC 10000g离心10s.
3、 加入2μl预冷的标记混合物(dCTP、dGTP 、dTTP 各0.75μmol/L),α-32P-dATP 5μCi,1μl 0.1mol/L DDT,测序酶2U,加水至15μl,混匀后置冰上2min,标记新合成的DNA链.
4、 在第1步骤的4个管中各加入3.5μl标记反应混合物,37OC温浴5min.每管各加入4μl终止液.
5、 样品在80OC的水浴中热变性5min,每一泳道加2μl 加到测序胶上,电泳分离这些片段.
注意事项:
1.?PCR产物要有一定的长度(>200bp),因为测序结果两端20-30bp的电泳峰图的准确性较低.
2.?纯化PCR产物可通过离子交换层析使扩增的DNA段与反应剩余的dNTP及引物分离;也可通过琼脂糖凝胶电泳,将PCR产物与非特异性扩增产物和引物分离开来;如果扩增的特异性较高时,可直接通过酚:氯仿抽提,乙醇沉淀的方法来纯化.
3.?测序引物设计原则类似于PCR引物设计,可在DNA合成仪上合成20个左右的核苷酸作为引物,经过高压液相层析或聚丙烯酰胺凝胶电泳纯化后,即可用作测序引物.
PCR循环测序法
PCR循环测序法是将PCR扩增和核酸序列分析技术相结合,从而形成的一种测定核苷酸序列的研究方法,也称作线性扩增测序.该方法采用PCR仪加热使DNA模板变性,在TaqDNA聚合酶作用下,以温度循环模式在模板上进行多轮的双脱氧核苷酸测序反应,线性扩增标记的DNA分子.
PCR循环测序法与以往的测序方法相比,其优点在于:大大减少所需的模板量;能提高测序反应产生的信号,降低了操作的复杂性,且聚合酶的用量减少;可在小量制备的模板上进行筛选反应;高温下进行的测序反应使DNA聚合酶催化的聚合反应能够通过模板二级结构的区域;双链闭环DNA可以直接作为反应模板应用,不用作预先碱变性处理.由于PCR循环测序法能够简单、快速地检测特定序列,因此, PCR循环测序法在核酸序列分析研究中受到广泛的重视.
试验试剂:
DNA测序试剂盒
dNTP
ddNTP
丙烯酰胺
双丙烯酰胺
尿素
TEMED(N,N,N‘,N’-四甲基乙二胺)
过硫酸铵
6%测序胶:6%丙烯酰胺,7mmol/L 尿素,1×TBE.
10×测序缓冲液:100mmol/L Tris-HCl(pH8.8),500mmol/L KCl,40mmol/L MgCl2,0.01%明胶,20μmol/L dATP,50μmol/L dCTP,50μmol/L dGTP,50μmol/L dTTP
终止混合液:ddATP (600μmol/L),ddCTP (600μmol/L),ddGTP (100μmol/L),ddTTP(1000μmol/L)
终止缓冲液:95%甲酰胺,20mmol/L EDTA,0.05%溴酚蓝,0.05%二甲苯腈
试验步骤
1、 4个小离心管,每个小管加入3μl的终止混合液,将管子放在冰上.
2、 在DNA模板中加入引物(4pmol), 4μl 10×测序缓冲液, 10μlα-32P-dATP, 2U TaqDNA聚合酶,加双蒸水到30μl彻底混匀,每管7μl加入上面4个小管中.
3、 反应液上加30μl的石蜡油.
4、 95OC 30S,50OC 30S,72OC 60S共30个循环,可根据具体的情况进行适当的调整循环条件及循环次数.
5、 反应结束后在油层下加入5μl的终止缓冲液并用加样枪混匀.
6、 上样前将样品在大于80OC的水浴中热变性5min,每一道加2μl加到测序胶上,电泳分离这些片段.
注意事项:
1、 制备测序模板:PCR 扩增的产物可以经过低熔点的琼脂糖凝胶电泳纯化回收后,用于序列分析;可经过柱层析纯化,去除PCR 反应后剩余的dNTP和引物后,用于序列分析.PCR 产物也可不经纯化直接用于测序,但是这种测序产生的结果较差,建议测序之前应进行PCR产物的纯化.各种标准的质粒制备方法所纯化出的质粒均可作为测序模板使用.用标准方法制备的M13噬菌体、粘粒、λDNA都适合用作测序模板用.但要注意的是反应体系中不应有与引物互补的非目的基因序列,否则将会导致测序实验的失败.
2、 测序引物:测序引物是指合成的与测序模板链特异性互补的寡核苷酸序列.可用α-32P-dATP和T4多聚核苷酸激酶对引物的5‘端进行标记,反应体系中引物、激酶和α-32P-dATP要保持在最佳的比例,以得到高比活性的标记引物;也可用α-32P-dATP标记新合成的DNA链.引物的浓度不宜高,否则容易形成引物二聚体,或产生非特异性的扩增引物.
3、 酶:各种缺乏3‘—5‘端外切活性的耐热DNA聚合酶都可以用于循环测序,其中TaqDNA聚合酶在DNA测序中最为常用.虽然应用PCR循环测序法能够简单、快速的进行基因序列的测定,但仍未能适应大规模DNA序列测定的需要,而PCR循环测序法、荧光标记和自动测序仪的联合使用成为大规模基因组测序的主要技术.该技术是采用荧光标记引物或双脱氧核苷三磷酸,反应产物经聚丙烯酰胺凝胶电泳后,经特定的DNA序列分析仪和分析系统处理待测的DNA序列.它的应用减轻了DNA序列测定的工作量,提高了测序的效率.
什么是基因测序?有什么应用?
基因测序是一种新型基因检测技术百,能够从血液或唾液度中分析测定基因全序列,预测罹患多种疾病的可能性,个体知的行为特征及行为合理。基因测序技术能锁定个人病变基因,提前预防和治道疗。基因测序相关产品和技术已由实验室专研究演变到临床使用,可属以说基因测序技术,是下一个改变世界的技术。
基因检测有什么用?第一,了解自身是否有遗传致病基因。具有癌症或多基因遗传病家族史的人是最需要做基因检测的对象,以便及早发现和及早预防,避免或延缓疾病发生的可能。第二,正确选择药物,避免不必要的药物浪费和药物不良反应。由于个体遗传基因上的差异,不同的人对外来物质(如药物)产生的反应也会有所不同,因此部分病人使用正常剂量的药物时,可能会出现药物过敏、红肿发疹的现象,或者是在服用相同药物时,有人觉得神效,有人却不但无效还有副作用。基因检测通过对药物反应相关基因的测定,帮助了解基因体质,协助预测可能的药物反应。第三,提供 健康 风险管理最好的依据。目前的很多不良环境因子,如空气(PM2.5)、水质及农药的污染,加上不良生活习惯像抽烟、饮酒等,都会诱导基因突变而产生疾病。基因检测可以了解各人在不同疾病上的发生倾向,进行全面的生活调整或干预,降低风险延缓疾病发生。比如:通过基因检测发现您的肺部有易感基因,那么您要少去空气污浊的地方,少做剧烈运动,定期对肺部进行保养和检测;如果肝病的易感基因,要少喝酒,要乐观,少发火,同时采取措施避免接触肝病传染源等。第四,基因检测的疾病诊断,检测引起遗传性疾病的突变基因。目前应用最广泛的基是新生儿遗传性疾病的检测、遗传疾病的诊断和某些常见病的辅助诊断。
基因检测作为一项生命科学领域基础技术,可用于农业育种、司法鉴定、食品安全、医疗 健康 等多个行业。其中在医疗 健康 领域应用场景大致分三类:科研级、临床级和消费级。
科研级应用面向科研机构、高等院校和药企等,作为基础研究和药物研发等。
临床级应用面向孕产妇、患者等,如生殖 健康 (无创产前筛查、植入前胚胎遗传学检测、新生儿遗传代谢检测)、遗传病筛查、肿瘤诊断及治疗(早期筛查、分子分型、用药指导、预后检测)等。
随着测序技术不断进步,测序成本逐渐降低,基因检测开始应用到大众 健康 领域。
基因芯片是前几年消费级基因检测产品的主流,基因芯片又称DNA微阵列,是把大量已知序列探针集成在同一个基片(如玻片、膜)上,经过标记的若干靶核苷酸序列与芯片特定位点上的探针杂交,通过检测杂交信号,对生物的基因信息进行分析。
基因芯片技术相对成本较低,但只能检测已知基因的某些位点,这就表示将来有新的基因加入研究时,无法获得相关信息。另外其假阳性率高,准确度方面有待提高。
WES全外显子测序技术近来被应用到大众 健康 基因检测领域。全外显子测序是指将全部基因的外显子进行测序和分析的技术,全外显子是人类基因组序列中能够表达出来翻译成蛋白质,直接在人体内发挥各种生理功能的基因序列。很多外显子上的基因位点突变后会直接影响蛋白质的结构和修饰,从而影响蛋白质的功能,引发一系列的生理现象或疾病。
WES技术的第一个优点在于全面性,在目前的研究基础上,可解读的内容非常多;与芯片检测相比,除了检测到已知基因位点,还可以发现新发突变。将WES技术应用于消费级基因检测,会使得消费级基因检测产品质量大大提升。CircleDNA圆基因就是应用的WES技术,可以为消费者提供500项报告内容,远远多于基于芯片技术的基因检测报告内容。
WES技术的第二个优点在于动态性和终身性,也就是说500项的报告内容并不是终点。基于已知的数据研究提供的报告,同时未知的数据也会被终身保留,随着科学研究的发展会有更多的解读。这一点也是没有将全部外显子组都检测到的芯片技术所望尘莫及的。
那消费级的基因检测对我们大众 健康 人群到底有什么作用呢?
消费级基因检测面向大众 健康 消费者,可以帮助人们更好地认识自己,指导 健康 生活,如合理膳食、科学运动、个性化安全用药的指导、有针对性的肌肤管理及疾病预防等。
基因测序是一种新型基因检测技术,能够从血液或唾液中分析测定基因全序列,预测罹患多种疾病的可能性,个体的行为特征及行为合理。目前,世界上最先进的基因测序技术是全基因组测序(Whole-Genome Sequencing),可以对一个生物体携带的所有基因信息进行测序,包括所有核染色体上已知基因和未知功能区域的碱基对测序,以及细胞器基因组的碱基对测序,它是分析基因组最全面的方法,能够从完整遗传密码中获得生命信息。全基因测序能提供高分辨率、精确到逐个碱基的基因组视图,可在最大程度上捕获遗传变异基因,实现一次测序,终生解读的目标
理论上说,知道了序列,就可以确定这个人的基因,从而能够知道这个人的表型特征,或者对那些病是易感的,以后有可能得什么病,以及对将来对孩子的遗传等等…
但目前来说,个人的全基因组还没有什么用,因为现在我们对基因组中序列的信息了解的还太少,如SNP相关疾病,多基因遗传病等。在科研上全基因组测序,可以为我们提供数据库,以便分析相关的特征。
1.先解释什么是基因
人由细胞组成,大多数细胞都具有细胞核,细胞核里含有大量的染色体,染色体则由DNA双链组成,DNA链则由脱氧核糖核苷酸组成,脱氧核糖核苷酸由碱基,磷酸,含氮碱基组成。DNA上一段有遗传功能的碱基序列及碱基的排列顺序则为基因
2.解释基因测序
利用化学测序法,Sanger法测序等科学方法进行基因顺序的检测。基因的顺序
应用
基因测序,本是一种实验室研究技术手段,因“名人效应”应用于高端体检、产前诊断等领域,价格不菲。基因测序最广为人知的,是影星安吉丽娜·朱莉通过基因检测,选择手术切除乳腺以降低患乳腺癌风险。2011年去世的苹果公司创始人史蒂夫·乔布斯患癌时,也曾接受过全基因测序。
根据基因顺序来判断自身的患病概率。唐氏综合征的产前筛查
我就是从事基因测序行业的,我来说说。基因测序技术不断在发展,简单的说就是通过无论是光学,还是现在的芯片方法,来检测生物体内DNA的碱基排列顺序的技术,DNA一共四种碱基,A,T,C,G,而排列顺序就多种多样,造就了世界上多种多样的生物体。
基因测序可以的应用很广泛,无论是人体的疾病发病原因 探索 和治疗,遗传疾病的预防。植物疾病,植物改造,新品种的改造,微生物的改良都需要知道基因序列,然后进行相应改动才能实现
这个也是通过血液和唾液也检测的吧,这个我知道安徽巢湖那边做的挺好的,好像是叫gta的一个软件就是他们的吧。谁有这个链接啊,发一下吧。
西医,一点用都没有。
神奇的国度,全是莲花清温的功劳,反对现代科学,几仟年前的羊皮书包打天下。
基因测序就是用测序仪测定物种细胞核基因碱基对序列的过程。
人的核基因有4种碱基组成,分别是ATGC,这4种碱基可以按不同顺序排列成序列,与另一个互补序列组成双螺旋。
基因序列中蕴藏了人体所有遗传信息,每个人的都不同,可以用来检测疾病,亲子鉴定,警方取证等等。