A是可逆矩阵的充分必要条件是︱A︱≠0(方阵A的行列式不等于0)。
给定一个 n 阶方阵 A,则下面的叙述都是等价的:
A 是可逆的。
A 的行列式不为零。
A 的秩等于 n(A 满秩)。
A 的转置矩阵 A也是可逆的。
AA 也是可逆的。
存在一 n 阶方阵 B 使得 AB=In。
存在一 n 阶方阵 B 使得 BA=In。
矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。
将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积 ,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等